Integration of

Trigonometric
Functions 13.6

Q Introduction

Integrals involving trigonometric functions are commonplace in engineering mathematics. This is
especially true when modelling waves and alternating current circuits. When the root-mean-square
(rms) value of a waveform, or signal is to be calculated, you will often find this results in an integral
of the form

/ sin’ t dt

In this Section you will learn how such integrals can be evaluated.

e be able to find a number of simple definite
and indefinite integrals

Q Prerequlsltes e be able to use a table of integrals

Before starting this Section you should ... e be familiar with standard trigonometric

identities

. e use trigonometric identities to write
% Learning Outcomes :

integrands in alternative forms to enable
them to be integrated

On completion you should be able to ...
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1. Integration of trigonometric functions

Simple integrals involving trigonometric functions have already been dealt with in Section 13.1. See
what you can remember:

Write down the following integrals:

(a)/sinxdx, (b)/cosxdx, (c)/sin2xdm, (d)/cosde:p

Your solution

(a) (b)

Answer

1 1
(a) —cosz+¢, (b)sinz+rc () ~3 cos2x + ¢, (d) §Sin2x+c.

The basic rules from which these results can be derived are summarised here:

/sinka:dx:—coskkx+c /coskacdxzsmkijc

k

In engineering applications it is often necessary to integrate functions involving powers of the trigono-
metric functions such as

/ sin? z dx or / cos? wt dt

Note that these integrals cannot be obtained directly from the formulas in Key Point 8 above.
However, by making use of trigonometric identities, the integrands can be re-written in an alternative
form. It is often not clear which identities are useful and each case needs to be considered individually.
Experience and practice are essential. Work through the following Task.
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1
Use the trigonometric identity sin?f = 5(1 — cos20) to express the integral

/sin2 x dx in an alternative form and hence evaluate it.

(a) First use the identity:

Your solution

/siandx :/

Answer

1
The integral can be written /5(1 — cos 2x)d.

Note that the trigonometric identity is used to convert a power of sinx into a function involving
cos 2z which can be integrated directly using Key Point 8.

(b) Now evaluate the integral:

Your solution

Answer

L(z—3isin2z+4¢) = o — Lsin2z 4+ K where K = ¢/2.

Use the trigonometric identity sin 2x = 2sin x cos z to find /sinz cosx dx

(a) First use the identity:

Your solution

/sinxcosxd:c :/

Answer

The integrand can be written as %sin 2x

(b) Now evaluate the integral:

Your solution

Answer

/%' d /2W1'2d L os 20 + Tl i Teos0= Lyl g
SIN X COSXT axr = —SINzZr Al — | —— COS 22X C — —— COS — COS = —— - =
; .2 1 ; LTy 177

This result is one example of what are called orthogonality relations.
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Engineering Example 3

Magnetic flux

Introduction

The magnitude of the magnetic flux density on the axis of a solenoid, as in Figure 13, can be found
by the integral:

B2 I
B:/ “02” sin 8 dg

1

where 1 is the permeability of free space (=~ 47 x 107" H m™!), n is the number of turns and I is
the current.

Py b
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Figure 13: A solenoid and angles defining its extent

Problem in words
Predict the magnetic flux in the middle of a long solenoid.
Mathematical statement of the problem

We assume that the solenoid is so long that 3; ~ 0 and 3 =~ 7 so that

% ponl ™ uonl
B = / Homt sin 8 df ~ / Hom sin 3 df3
8 2 0 2

Mathematical analysis

ponl

The factor can be taken outside the integral i.e.

I [ I T 1
B =H" / sinﬁdﬁ:'uon —cos 8 = Hoft (—cosm + cos0)
2/, 2 .2

_ pond
)

(—(=1)+1) = ponl
Interpretation

The magnitude of the magnetic flux density at the midpoint of the axis of a long solenoid is predicted
to be approximately ponl i.e. proportional to the number of turns and proportional to the current
flowing in the solenoid.
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2. Orthogonality relations

In general two functions f(z), g(x) are said to be orthogonal to each other over an interval a < 2 < b

if
/ f(2)g(x) dz =0

It follows from the previous Task that sinx and cosz are orthogonal to each other over the interval
0 < x < 27. This is also true over any interval @« < =z < a+ 27 (eg. 7/2 < x < 5w, or
—r <z <m).

More generally there is a whole set of orthogonality relations involving these trigonometric functions
on intervals of length 27 (i.e. over one period of both sinz and cosx). These relations are useful
in connection with a widely used technique in engineering, known as Fourier analysis where we
represent periodic functions in terms of an infinite series of sines and cosines called a Fourier series.
(This subject is covered in HELM 23.)

We shall demonstrate the orthogonality property
27
Ly = / sinmasinnx dr =0
0

where m and n are integers such that m # n.

The secret is to use a trigonometric identity to convert the integrand into a form that can be readily
integrated.

You may recall the identity
1
sin Asin B = §(cos(A — B) —cos(A+ B))

It follows, putting A = max and B = nx that provided m # n

Ijn = % /0 7r[cos(m —n)x — cos(m + n)z| dr
_ 1 [sin(m —n)r _ sin(m+n)x o
2| (m—n) (m+n) |,
=0

because (m —n) and (m + n) will be integers and sin(integerx2m) = 0. Of course sin0 = 0.
Why does the case m = n have to be excluded from the analysis? (left to the reader to figure out!)

The corresponding orthogonality relation for cosines

2T
S = / cosmx cosnz dr =0
0

follows by use of a similar identity to that just used. Here again m and n are integers such that
m#n.
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Example 23
1

Use the identity sin Acos B = §(sin(A + B) + sin(A — B)) to show that

2
K., = / sinmx cosnx dxr =0 m and n integers, m # n.
0

Solution
1

Ky = 5/ sin(m + n)z + sin(m — n)z| dz

_ 1] cos(m+mn)z  cos(m—n)z o

2 (m+n) (m—n) |,

1 Jcos(m+mn)2r —1 cos(m—n)2mr —1] 0

2 (m+n) (m —n) B
(recalling that cos(integer x 2m) = 1)

Derive the orthogonality relation
2
Ko = / sinma cosnz dr =0 m and n integers, m =n
0

Hint: You will need to use a different trigonometric identity to that used in Example
23.

Your solution
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Answer

2T
K, = / sin mx cosmzx dx
0

Putting m = n # 0, and then using the identity sin 24 = 2sin A cos A we get

21
Kpm = / sin mx cosmx dx
0
1 2
= —/ sin 2mx dx
2 Jo
1 2max ] 1 1
= 5[—%]0 :—E(cosélmﬂ—cosO):—E(l—l)zo

1 2m
Putting m = n = 0 gives Ky = 5/ sin(0cos 0 dx = 0.
0

Note that the particular case m = n = 1 was considered earlier in this Section.

3. Reduction formulae

You have seen earlier in this Workbook how to integrate sin  and sin® z (which is (sinz)?). Appli-
cations sometimes arise which involve integrating higher powers of sinx or cosz. It is possible, as
we now show, to obtain a reduction formula to aid in this Task.

Answer
I = /sian dx I3 = /sian dx Iy = /sinmx dx

To obtain a reduction formula for I,, we write
sin” z = sin" " !(x) sinz

and use integration by parts.
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In the notation used earlier in this Workbook for integration by parts (Key Point
1

5, page 31) put f =sin" "z and g = sinx and evaluate T and [ g dz.
x

Your solution

Answer

a

= (n —1)sin" %z cosz (using the chain rule of differentiation),

dx
/g dx:/sinx dr = —cosx

Now use the integration by parts formula on /sin"_1 xzsinz dx. [Do not attempt to evaluate the

second integral that you obtain.]

Your solution

Answer

d
/sin"lxsinx de = sin"l(m)/g dx—/%/g dx
san—1

= sin" ' (z)(—cosz) 4+ (n—1) /sin”2 xcos’ z dx

We now need to evaluate /sin”_2 x cos® xdx. Putting cos?z = 1 — sin? z this integral becomes:

/ §in™2(z) dz — / sin" () dz

But this is expressible as I,,_5 — I,, so finally, using this and the result from the last Task we have
I, = /sin"‘l(a:) sinz dr = sin" ' (z)(—cosz) + (n — 1) (Lo — I,,)

from which we get Key Point 9:
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Q Key Point 9

Reduction Formula

Given I,, = /sin” xdr

1 -1
I, = ——sin" !(x) cosz + n—]n_g
n

n

This is our reduction formula for I,,. It enables us, for example, to evaluate Ig in terms of I, then
14 in terms of Iy and I in terms of I where

Ioz/sinoxdx:/ldx:x.

Use the reduction formula in Key Point 9 with n = 2 to find I5.

Your solution

Answer

1 1
I, = —i[sinxcosx}—i-élg

1.1
= —§[§sin2x] + g +c

1 T
. ) .
.e. de = —- 2 —
e /smx X 4sm x+2+c

as obtained earlier by a different technique.
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Firstly obtain I in terms of I4, then I, in terms of [y:

Your solution

Answer

1 5
Using Key Point 9 with n = 6 gives I5 = o sin® x cos & + 61'4.

3

, , o . 1. 3
Then, using Key Point 9 again with n =4, gives [, = 1 sin” x cos & + ZIQ

Now substitute for /5 from the previous Task to obtain I, and hence I;.

Your solution

Answer
I, = ——sin®rcosx — 5 sin 2z + Sx—i- constant
T 16 8
1. 5 . 3 5 . )
Is = ——sin’zcosx — — sin° rcosx — — sin2x + —x + constant
6 2 32 16

Definite integrals can also be readily evaluated using the reduction formula in Key Point 9. For
example,

w/2 w/2
I, = / sin"xz dr so I, o= / sin" 2z dx
0 0

We obtain, immediately

1 21
I, =~ [ — sin""!(z) cos x} + n I, o
n 0
—1
or, since cosg =sin0 = 0, I, = (n )In_g

This simple easy-to-use formula is well known and is called Wallis’ formula.
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Q Key Point 10

Reduction Formula - Wallis’ Formula

w/2 /2
Given In:/ sin"xdr or ]n:/ cos”" x dx
0 0

w/2
If I, = / sin™ x dx calculate I; and then use Wallis' formula, without further
0

integration, to obtain /35 and I5.

Your solution

Answer

7r/2 7'('/2
_71:/ sinz dr = |:—COSIE:| =1
0 0

Then using Wallis' formula with n = 3 and n = 5 respectively

/2 2 2 2
Iy = infrdr=L=-x1=2
3 /0 sm” x dx 31 3 3
/2 4 4 2 8
I = inzdr=-I3=-xX==—
5 /0 sin- T ax 53 5><3 15
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The total power P of an antenna is given by

™ L2]2
P:/ T sint0 do
0

where 1, A\, I are constants as is the length L of antenna. Using the reduction

formula for [ sin" x dz in Key Point 9, obtain P.

Your solution

Answer
Ignoring the constants for the moment, consider

I3 = / sin® @ df which we will reduce to I; and evaluate.
0

11:/ sin@dez{—cosé] =2
0 0

so by the reduction formula with n = 3

1 o2 2 4
1325 [ —sinzzcosx]0+§]1 :0—1—5 ><2:§
We now consider the actual integral with all the constants.
nL*Pr [T . nL*I’r 4 L?I*n
Hence P = o Osm 9d9:4—)\2x§,soP:n e

A similar reduction formula to that in Key Point 9 can be obtained for /cos"x dx (see Exercise 5

at the end of this Workbook). In particular if

/2 -1
J, = / cos"x dr then J,= (n - >Jn_2
0

i.e. Wallis’' formula is the same for cos™ z as for sin” .
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4. Harder trigonometric integrals

The following seemingly innocent integrals are examples, important in engineering, of trigonometric
integrals that cannot be evaluated as indefinite integrals:

(a) /sin(xz) dx and /cos(a:z) dx  These are called Fresnel integrals.

(b) /smx dx  This is called the Sine integral.

x
Definite integrals of this type, which are what normally arise in applications, have to be evaluated
by approximate numerical methods.

Fresnel integrals with limits arise in wave and antenna theory and the Sine integral with limits in
filter theory.

It is useful sometimes to be able to visualize the definite integral. For example consider

t .
F(t):/ Pl >0
0

T

0 - .
Clearly, F'(0) = / PIT Jr = 0. Recall the graph of e against x, z > 0:
o x

sin x

Az

=Y

Figure 14

For any positive value of ¢, F'(t) is the shaded area shown (the area interpretation of a definite integral
was covered earlier in this Workbook). As ¢ increases from 0 to m, it follows that F'(¢) increases from
0 to a maximum value

F(ﬂ'):/ sing
0

X

whose value could be determined numerically (it is actually about 1.85). As ¢ further increases from

, . sin x ,
7 to 27 the value of F'(t) will decrease to a local minimum at 27 because the —— curve is below

x
the z-axis between 7 and 27. Note that the area below the curve is considered to be negative in
this application.

Continuing to argue in this way we can obtain the shape of the F'(t) graph in Figure 15: (can you
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see why the oscillations decrease in amplitude?)

AF()
1.85

| N

Figure 15

o
SN T
The result

T . . :
dx = 5 is clearly illustrated in the graph (you are not expected to know
x

0
how this result is obtained). Methods for solving such problems are dealt with in HELM 31.
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Exercises

You will need to refer to a Table of Trigonometric Identities to answer these questions.
/2
1. Find (a) /COS2 xdx (b) / cos® tdt (c) /(00529 + sin® 6)d6
0
2. Use the identity sin(A + B) + sin(A — B) = 2sin A cos B to find /sin 3x cos 2zdx

3. Find /(1—|—tan2 z)d.

4. The mean square value of a function f(t) over the interval t = a to t = b is defined to be

e RUOIRC

Find the mean square value of f(¢) = sint over the interval t = 0 to ¢ = 2.

5. (a) Show that the reduction formula for J,, = /cos”x dx is

1 -1
Jp = —cos" ! (z)sinz + (n=1)
n

Jn—2
(b) Using the reduction formula in (a) show that
5 1 4 . 2 . .
cos’x dxr = gcos rsmax + 1—5005 rsmx + —sinx

15

n—1

n

w/2
(c) Show thatif J, = / cos" x dx, then J, = ( > Jn—o (Wallis" formula).
0

/2 5
(d) Using Wallis’ formula show that / cos® x dr = 5"
0

Answers
1. (@) 3z +3sin2z+c¢  (b)w/4  (c)O+c
2. —%cos dT — %cosx + c.
3. tanz +c.

4.

1
3-

62 HELM (2008):
Workbook 13: Integration



