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Introduction
When you were first introduced to integration as the reverse of differentiation, the integrals you dealt
with were indefinite integrals. The result of finding an indefinite integral is usually a function plus a
constant of integration. In this Section we introduce definite integrals, so called because the result
will be a definite answer, usually a number, with no constant of integration. Definite integrals have
many applications, for example in finding areas bounded by curves, and finding volumes of solids.
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�
Prerequisites

Before starting this Section you should . . .

• understand integration as the reverse of
differentiation

• be able to use a table of integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• find simple definite integrals

• handle some integrals involving an infinite
limit of integration
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1. Definite integrals

We saw in the previous Section that

∫
f(x) dx = F (x) + c where F (x) is that function which, when

differentiated, gives f(x). That is,
dF

dx
= f(x). For example,∫

sin(3x) dx = −cos(3x)

3
+ c

Here, f(x) = sin(3x) and F (x) = −1
3
cos(3x) We now consider a definite integral which is simply

an indefinite integral but with numbers written to the upper and lower right of the integral sign. The
quantity∫ b

a

f(x) dx

is called the definite integral of f(x) from a to b. The numbers a and b are known as the lower
limit and upper limit respectively of the integral. We define∫ b

a

f(x) dx = F (b)− F (a)

so that a definite integral is usually a number. The meaning of a definite integral will be developed
in later Sections. For the present we concentrate on the process of evaluating definite integrals.

2. Evaluating definite integrals
When you evaluate a definite integral the result will usually be a number. To see how to evaluate a
definite integral consider the following Example.

Example 9
Find the definite integral of x2 from 1 to 4; that is, find

∫ 4

1

x2 dx

Solution∫
x2 dx = 1

3
x3 + c

Here f(x) = x2 and F (x) = x3

3
. Thus, according to our definition∫ 4

1

x2 dx = F (4)− F (1) =
43

3
− 13

3
= 21
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Writing F (b)− F (a) each time we calculate a definite integral becomes laborious so we replace this

difference by the shorthand notation

[
F (x)

]b

a

. Thus

[
F (x)

]b

a

≡ F (b)− F (a)

Thus, from now on, we shall write∫ b

a

f(x) dx =

[
F (x)

]b

a

so that, for example∫ 4

1

x2 dx =

[
x3

3

]4

1

=
43

3
− 13

3
= 21

Example 10
Find the definite integral of cos x from 0 to

π

2
; that is, find

∫ π/2

0

cos x dx.

Solution

Since
∫

cos x dx = sin x + c then∫ π/2

0

cos x dx =

[
sin x

]π/2

0

= sin
(π

2

)
− sin 0 = 1− 0 = 1

Always remember, that if you use a calculator to evaluate any trigonometric functions, you must
work in radian mode.

Task

Find the definite integral of x2 + 1 from 1 to 2; that is; find

∫ 2

1

(x2 + 1) dx

First perform the integration:

Your solution

Answer[
1

3
x3 + x

]2

1

.
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Now insert the limits of integration, the upper limit first, and hence evaluat the integral:

Your solution

Answer(
8

3
+ 2

)
−

(
1

3
+ 1

)
=

10

3
or 3.333 (3 d.p.).

Task

Find

∫ 1

2

(x2 + 1) dx.

This Task is very similar to the previous Task. Note the limits have been interchanged:

Your solution

Answer[
1

3
x3 + x

]1

2

=

[
1

3
+ 1

]
−

[
8

3
+ 2

]
= −10

3
.

Note from these two Tasks that interchanging the limits of integration, changes the sign of the
answer.

Key Point 3

If you interchange the limits, you must change the sign:∫ b

a

f(x) dx = −
∫ a

b

f(x) dx
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Task

When a spring is fixed at one end and stretched at the free end it exerts a restoring
force that is proportional to the displacement of the free end. The constant
of proportionality k N m−1 is known as the stiffness of the spring. Calculate
the work done in stretching a spring with stiffness k from displacement x1 m to
displacement x2 m (x2 > x1) given that the work done (W ) is the product of
force and displacement.

Your solution

Answer
The restoring force varies during the displacement. So the work done during the extension cannot
be determined from a single simple product.

Consider a small element ∆x of the extension beyond an arbitrary displacement x. The element is
sufficiently small that the force during the displacement can be regarded as constant and equal to
the force at displacement x is kx. So the work done ∆W in extending the spring from displacement
x to displacement x + ∆x is approximately kx∆x.

Using the idea of integration as a limit of a sum, in this case as ∆x tends to zero,

W =

∫ x2

x1

kx dx =

[
1

2
kx2

]x2

x1

=
1

2
k(x2

2 − x2
1)

Exercises

1. Evaluate (a)

∫ 1

0

x2 dx, (b)

∫ 3

2

1

x2
dx (c)

∫ 2

1

ex dx (d)

∫ 1

−1

(1 + t2) dt

2. Find (a)

∫ π/3

0

cos 2x dx (b)

∫ π

0

sin x dx (c)

∫ 3

1

e2t dt

Answers

1. (a)
1

3
(b)

1

6
(c) e2 − e1 = 4.671 (d) 2.667

2 (a)
√

3/4 = 0.4330 (b) 2 (c) 198.019
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Engineering Example 2

Torsion of a mild-steel bar

Introduction

For materials such as mild-steel, the relationship between applied shear stress and shear strain (de-
formation) can be described as follows.

• For small values of the shear strain, the shear stress (τ) and shear strain (ω) are proportional
to one another, i.e.

ω =
1

G
× τ (1)

(where G is the shear modulus). This is known as elastic behaviour.

• There is a maximum shear stress that the material is capable of supporting. If the shear
strain is increased further, the shear stress remains roughly constant. This is known as plastic
behaviour.

Figure 3 summarises the relationship between shear stress and shear strain; the point (ω
Y
, τ

Y
) is

known as the yield point.

-
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shear strain
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Y

τ

shear
stress

Figure 3

Now suppose that one end of a bar of circular cross section is twisted through an angle θ, then the
shear strain on the surface is given by

ω
S

=
R θ

L
(2)

(where R and L are the radius and length of the bar respectively), while the shear strain, at a distance
r from the central core, is given by

ω =
r θ

L
(3)

The torque transmitted by a bar is given by the integral

T =

∫ R

0

2π r2 τ(r) dr (4)
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As the shear strain is a function of distance from the central axis of the bar, it may be that the shear
strain on the surface is greater than the critical shear strain ω

Y
. In this scenario the shear stress is

given by

τ =


τ

Y

ω
Y

ω ω ≤ ω
Y

τ
Y

ω > ω
Y

(5)

i.e. the regions near the central axis exhibit elasticity, but in those regions near the surface the elastic
limit has been exceeded and the metal exhibits plasticity (see Figure 4).

elastic
zone

plastic zone

τ

τY

0

re

R

re R

Figure 4

Problem in words

Find an expression for the torque transmitted by a bar as a function of the angle θ through which
one end is turned.

Mathematical statement of problem

Using Equations (3) to (5), find a formula for T in terms of the variable θ.

Mathematical analysis

Substituting (3) into (5)

τ =


τ

Y

ω
Y

r θ

L

r θ

L
≤ ω

Y

τ
Y

r θ

L
> ω

Y

=


τ

Y

ω
Y

r θ

L
r ≤

L ω
Y

θ
= re

τ
Y

r >
L ω

Y

θ
= re
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For small values of θ, re ≥ R so that the whole of the bar will be in the elastic region, i.e.

τ =
τ

Y

ω
Y

r θ

L

Now (4) becomes

T =

∫ R

0

2π r2 τ
Y

ω
Y

r θ

L
dr = 2π

τ
Y

ω
Y

θ

L

∫ R

0

r3 dr = 2π
τ

Y

ω
Y

θ

L

[
r4

4

]R

0

=
π

2

τ
Y

ω
Y

θ

L
R4 (6)

i.e. the torque is directly proportional to the twist, θ.

For larger θ, re < R, so that (4) becomes

T =

∫ re

0

2π r2 τ
Y

ω
Y

r θ

L
dr +

∫ R

re

2π r2 τ
Y

dr

= 2π
τ

Y

ω
Y

θ

L

∫ re

0

r3 dr + 2π τ
Y

∫ R

re

r2 dr

= 2π
τ

Y

ω
Y

θ

L

[
r4

4

]re

0

+ 2π τ
Y

[
r3

3

]R

re

=
π

2

τ
Y

ω
Y

θ

L
r4
e +

2π

3
τ

Y

(
R3 − r3

e

)
But re = L ω

Y
/θ, so

T =
π

2

τ
Y

ω
Y

θ

L

L4 ω4

Y

θ4
+

2π

3
τ

Y
R3 − 2π

3
τ

Y

L3 ω3

Y

θ3

=
2π

3
τ

Y
R3 + π

(
1

2
τ

Y
− 2

3
τ

Y

)
L3 ω3

Y

θ3

=
2π

3
τ

Y
R3 − π

6
τ

Y

L3 ω3

Y

θ3
(7)

Equation (6) will apply when re ≥ R, i.e. (L ω
Y
/θ) ≥ R or θ ≤ (L ω

Y
/R), so that combining (6)

and (7) gives overall

T =


π

2

τ
Y

ω
Y

θ

L
R4 θ ≤

L ω
Y

R

2π

3
τ

Y
R3 − π

6
τ

Y

L3 ω3

Y

θ3
θ >

L ω
Y

R

(8)

Interpretation and further comment

At the critical value of θ, i.e. when the outer edge begins to exhibit plasticity, both formulae in (8)
give

Tcrit =
π

2
τ

Y
R3

Furthermore, the first derivatives are both

dT

dθ
=

π

2

τ
Y

ω
Y

R4

L
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i.e. the curves join smoothly.

The second derivatives, though, are not equal (zero in one case). In the theoretical limit as θ →∞

T =
2π

3
τ

Y
R3

so this is the total torsional torque which can be carried by the bar. (The critical torque above is
three-quarters of this value.) However, clearly θ → ∞ is merely a theoretical limit since the bar
would, in fact, shear at a finite value of θ.

3. Some integrals with infinite limits
On occasions, and notably when dealing with Laplace and Fourier transforms, you will come across
integrals in which one of the limits is infinite. We avoid a rigorous treatment of such cases here and
instead give some commonly occurring examples.

Example 11
Find the definite integral of e−x from 0 to ∞; that is, find

∫ ∞

0

e−x dx.

Solution

The integral is found in the normal way:

∫ ∞

0

e−x dx =

[
− e−x

]∞
0

There is no difficulty in evaluating the square bracket at the lower limit. We obtain simply −e−0 =
−1. At the upper limit we must examine the behaviour of −e−x as x gets infinitely large. This is
where it is important that you are familiar with the properties of the exponential function. If you
refer to the graph (Figure 5) you will see that as x tends to infinity e−x tends to zero.

Consequently the contribution to the integral from the upper limit is zero. So

x

e−x

∫ ∞

0

e−xdx =
[
−e−x

]∞
0

= (−e−∞) − (−e−0)
= (0) − (−e−0)
= 1

Figure 5

Thus the value of

∫ ∞

0

e−x dx is 1.

Another way of achieving this result is as follows:

We change the infinite limit to a finite limit, b, say and then examine the behaviour of the integral
as b tends to infinity, written as
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∫ ∞

0

e−x dx = lim
b→∞

∫ b

0

e−x dx

Now,

∫ b

0

e−x dx =

[
− e−x

]b

0

=
(
−e−b

)
−

(
−e−0

)
= −e−b + 1

Then as b tends to infinity −e−b tends to zero, and the resulting integral has the value 1, as before.
Many integrals having infinite limits cannot be evaluated in a simple way like this, and many cannot
be evaluated at all. Fortunately, most of the integrals you will meet will exhibit the sort of behaviour
seen in the last example.

Exercise

Evaluate (a)

∫ ∞

1

e−x dx (b)

∫ ∞

0

e−2x dx (c)

∫ ∞

2

e−3x dx (d)

∫ ∞

1

4

t2
dt

Answer

(a) e−1 ∼ 0.368 (b) 1
2

(c) 1
3
e−6 = 0.0008 (4 d.p.) (d) 4
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