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Electronic Filters
Electronic filters are used widely, for example in audio equipment to correct for imperfections in
microphones or loudspeakers, or to introduce special effects. The purpose of a filter is to produce
an alternating current (a.c.) output voltage that varies with the frequency of the input voltage. A
filter must have at least one component which has an impedance that varies with frequency. The
impedance is given by the time dependent ratio of ‘voltage across the component’ to ‘current through
the component’. This means that a filter must contain at least one inductance or capacitance. An
inductor consists of a large number of coils of wire. When the current i flowing through an inductor
changes, the associated magnetic field changes and produces a voltage v across the inductor which
is proportional to the rate of change of the current. The constant of proportionality (inductance)
is given the symbol L.

In electronics, it is usual to use lower case symbols for the time varying quantities. The standard
representations for a.c. electronic signals are

v = V0e
jωt and i = I0e

jωt

where V0 is the (real) amplitude of the a.c. voltage and I0 is the (real) amplitude of the a.c. current
and j =

√
−1.
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Figure 33: (a) an inductor (b) a capacitor

An inductor (see Figure 33) gives rise to an a.c. voltage

v = L
di

dt
= jωLi

Hence v/i = jwL is the impedance of the inductor. The purely imaginary quantity, jwL, is called
the reactance of the inductor. Usually a coil of wire forming an inductor also has resistance but
this can be designed or assumed to be negligible. A capacitor consists of two conducting plates
separated by a thin insulator. The charge (q) on the plates is proportional to the voltage (v) between
the plates. The constant of proportionality (capacitance) is given the symbol C. So q = Cv. The
current (i) into the capacitor is equal to the rate of change of the charge on the capacitor i.e.
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i =
dq

dt
= C

dv

dt
= jωCv.

Hence, for a capacitor, the impedance Zc = v/i = 1/jwC. This purely imaginary quantity is also a
reactance. Because of Ohm’s law (v = iR), a resistance R provides a constant (real) contribution
of R to the impedance of a circuit. If two resistors R1 and R2 are in series the same current passes
through both of them and the combined resistance is R1 + R2. In the circuit shown in Figure 34
(consider the left-hand representation of this circuit first but note that the right-hand version is
equivalent), the input voltage across both resistors and the output voltage across R2 are related by

vin = i(R1 + R2) and vout = iR2 so
vout

vin

=
R2

R1 + R2

.

Such a circuit is called a potential divider.
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Figure 34: Two representations of a potential divider circuit

Now consider this circuit with the resistor R2 replaced by a capacitor C as in Figure 35.

vout

R

vin
C

Figure 35: Low pass filter circuit containing a resistor and a capacitor

If R1 is replaced by R and R2 by ZC = 1/jwC, in the relevant expression for the potential divider
circuit, then

vout

vin

=
1/jωC

R + 1/jωC
=

1

1 + jωRC

The square of the magnitude of the voltage ratio is given by multiplying the existing complex expres-
sion by its complex conjugate, i.e.∣∣∣∣vout

vin

∣∣∣∣2 =
1

(1 + jωRC)(1− jωRC)
=

1

(1 + ω2R2C2)
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Figure 36 shows a plot of the magnitude of the voltage ratio as a function of ω, i.e. the frequency
response for R = 10 Ω and C =1 µF (i.e. 10−6F). Note that the magnitude of the output voltage
is close to that of the input voltage at low frequencies but decreases rapidly as frequency increases.
This is an ideal low pass filter response.
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Figure 36: Frequency response of a low pass filter

Engineering problem stated in words

vin
C

R
L

vout

Figure 37: An LC filter circuit

Plot the frequency response of the LC filter circuit shown in Figure 37 if R = 10 Ω,
L = 0.1 mH (i.e. 10−4H) and C = 1 µF. After plotting the response for two values of R below 10
Ω, comment on the way in which the response varies as R varies. Identify the frequency for which
the response is maximum.

Engineering problem expressed mathematically

(a) Noting that the resistor and inductor are in series, replace R1 by (R + jwL) and R2 by

1/jwC in the equation
vout

vin

=
R2

R1 + R2

(b) Derive an expression for

∣∣∣∣vout

vin

∣∣∣∣2
(c) Hence plot

∣∣∣∣vout

vin

∣∣∣∣ as a function of ω for R = 10 Ω.
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(d) Plot

∣∣∣∣vout

vin

∣∣∣∣ for two further values of R < 10 Ω (e.g. 5 Ω and 2 Ω).

(e) Find an expression for the value of ω = ωres at which

∣∣∣∣vout

vin

∣∣∣∣ is maximum.

Mathematical analysis

(a) The substitutions R1 → (R + jwL) and R2 → 1/jwC in the equation

vout

vin

=
R2

R1 + R2

yield
vout

vin

=
1/jωC

R + jωL + 1/jωC
=

1

(1− ω2LC + jωRC)

(b) Multiplying by the complex conjugate of the denominator∣∣∣∣vout

vin

∣∣∣∣2 =
1

(1− ω2LC + jωRC)(1− ω2LC − jωRC)
=

1

(1− ω2LC)2 + ω2R2C2

(c) See the solid line in Figure 38.
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Figure 38: Frequency response of LC filter

(d) See the other broken lines in Figure 38.

There is a peak in the voltage output, which can exceed the voltage input by a considerable
amount. It is particularly noticeable for small values of the resistance and decreases as
the resistance increases.

(e)

∣∣∣∣vout

vin

∣∣∣∣ will be maximum when the first term in the denominator is zero (the other term

is always positive for ω > 0) i.e. when

ω = ωres =
1√
LC

or fres =
ωres

2π
=

1

2π
√

LC

The corresponding frequency is known as the resonant frequency of the circuit.

Additional comment

The resonant behaviour depicted in Figure 38 is found in certain vibrating systems as well as electronic
circuits. This gives rise to an electrical analogy for such mechanical systems and will be explored
further after 19 on differential equations.
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