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Introduction
This Section is concerned with the problem of “root location”; i.e. finding those values of x which
satisfy an equation of the form f(x) = 0. An initial estimate of the root is found (for example by
drawing a graph of the function). This estimate is then improved using a technique known as the
Newton-Raphson method, which is based upon a knowledge of the tangent to the curve near the
root. It is an “iterative” method in that it can be used repeatedly to continually improve the accuracy
of the root.
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Prerequisites

Before starting this Section you should . . .

• be able to differentiate simple functions

• be able to sketch graphs'
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Learning Outcomes
On completion you should be able to . . .

• distinguish between simple and multiple roots

• estimate the root of an equation by drawing
a graph

• employ the Newton-Raphson method to
improve the accuracy of a root
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1. The Newton-Raphson method
We first remind the reader of some basic notation: If f(x) is a given function the value of x for
which f(x) = 0 is called a root of the equation or zero of the function. We also distinguish between
various types of roots: simple roots and multiple roots. Figures 21 - 23 illustrate some common
examples.

xxxx0

simple root double root triple root

y = f(x)

yyy

y = (x − 1)2 y = (x − 2)3

1 2

Figure 21 Figure 22 Figure 23

More precisely; a root x0 is said to be:

a simple root if f(x0) = 0 and
df

dx

∣∣∣∣
x0

6= 0.

a double root if f(x0) = 0,
df

dx

∣∣∣∣
x0

= 0 and
d2f

dx2

∣∣∣∣
x0

6= 0, and so on.

In this Section we shall concentrate on the location of simple roots of a given function f(x).

Task

Given graphs of the functions (a) f(x) = x3 − 3x2 + 4, (b) f(x) = 1 + sin x
classify the roots into simple or multiple.

Your solution

(a) f(x) = x3 − 3x2 + 4: The negative root is: and the positive root is:

x

y

x = 2

Answer

The negative root is simple and the positive root is double.

Your solution

(b) f(x) = 1 + sin x: Each root is a root

x

y

Answer

Each root is a double root.
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2. Finding roots of the equation fff(((xxx))) === 000
A first investigation into the roots of f(x) might be graphical. Such an analysis will supply information
as to the approximate location of the roots.

Task

Sketch the function

f(x) = x− 2 + ln x x > 0

and estimate the value of the root.

Your solution

x

y

1 2

An estimate of the root is:

Answer

x

y

1 2

A simple root is located near 1.5

One method of obtaining a better approximation is to halve the interval 1 ≤ x ≤ 2 into 1 ≤ x ≤ 1.5
and 1.5 ≤ x ≤ 2 and test the sign of the function at the end-points of these new regions. We find

x f(x)
1 < 0
1.5 < 0
2 > 0

so a root must lie between x = 1.5 and x = 2 because the sign of f(x) changes between these
values and f(x) is a continuous curve. We can repeat this procedure and divide the interval (1.5, 2)
into the two new intervals (1.5, 1.75) and (1.75, 2) and test again. This time we find

x f(x)
1.5 < 0
1.75 > 0
2.0 > 0
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so a root lies in the interval (1.5, 1.75). It is obvious that proceeding in this way will give a smaller
and smaller interval in which the root must lie. But can we do better than this rather laborious
bisection procedure? In fact there are many ways to improve this numerical search for the root. In
this Section we examine one of the best methods: the Newton-Raphson method.

To derive the method we examine the general characteristics of a curve in the neighbourhood of a
simple root. Consider Figure 24 showing a function f(x) with a simple root at x = x∗ whose value
is required. Initial analysis has indicated that the root is approximately located at x = x0. The aim
is to provide a better estimate to the location of the root.

x

y

x∗

y =f(x)

x0

Figure 24

The basic premise of the Newton-Raphson method is the assumption that the curve in the close
neighbourhood of the simple root at x∗ is approximately a straight line. Hence if we draw the
tangent to the curve at x0, this tangent will intersect the x-axis at a point closer to x∗ than is x0:
see Figure 25.

x

y

x∗x1

P Q

R
f(x0)y =

x0

θ

Figure 25

From the geometry of this diagram we see that

x1 = x0 − PQ

But from the right-angled triangle PQR we have

RQ

PQ
= tan θ = f ′(x0)

and so PQ =
RQ

f ′(x0)
=

f(x0)

f ′(x0)
∴ x1 = x0 −

f(x0)

f ′(x0)

If f(x) has a simple root near x0 then a closer estimate to the root is x1 where

x1 = x0 −
f(x0)

f ′(x0)

This formula can be used iteratively to get closer and closer to the root, as summarised in Key Point
5:
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Key Point 5

Newton-Raphson Method

If f(x) has a simple root near xn then a closer estimate to the root is xn+1 where

xn+1 = xn −
f(xn)

f ′(xn)

This is the Newton-Raphson iterative formula. The iteration is begun with an initial estimate
of the root, x0, and continued to find x1, x2, . . . until a suitably accurate estimate of the position
of the root is obtained. This is judged by the convergence of x1, x2, . . . to a fixed value.

Example 4
f(x) = x − 2 + ln x has a root near x = 1.5. Use the Newton-Raphson method
to obtain a better estimate.

Solution

Here x0 = 1.5, f(1.5) = −0.5 + ln(1.5) = −0.0945

f ′(x) = 1 +
1

x
∴ f ′(1.5) = 1 +

1

1.5
=

5

3
Hence using the formula:

x1 = 1.5− (−0.0945)

(1.6667)
= 1.5567

The Newton-Raphson formula can be used again: this time beginning with 1.5567 as our estimate:

x2 = x1 −
f(x1)

f ′(x1)
= 1.5567− f(1.5567)

f ′(1.5567)
= 1.5567− {1.5567− 2 + ln(1.5567)}{

1 +
1

1.5567

}
= 1.5567− {−0.0007}

{1.6424}
= 1.5571

This is in fact the correct value of the root to 4 d.p., which calculating x3 would confirm.
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Task

The function f(x) = x− tan x has a simple root near x = 4.5. Use one iteration
of the Newton-Raphson method to find a more accurate value for the root.

First find
df

dx
:

Your solution
df

dx
=

Answer
df

dx
= 1− sec2 x = − tan2 x

Now use the formula x1 = x0 − f(x0)/f
′(x0) with x0 = 4.5 to obtain x1:

Your solution

f(4.5) = 4.5− tan(4.5) =

f ′(4.5) = 1− sec2(4.5) = − tan2(4.5) =

x1 = 4.5− f(4.5)

f ′(4.5)
=

Answer
f(4.5) = −0.1373, f ′(4.5) = −21.5048

∴ x1 = 4.5− 0.1373

21.5048
= 4.4936.

As the value of x1 has changed little from x0 = 4.5 we can expect the root to be 4.49 to 3 d.p.

Task

Sketch the function f(x) = x3 − x + 3 and confirm that there is a simple root
between x = −2 and x = −1. Use x0 = −2 as an initial estimate to obtain the
value to 2 d.p.

First sketch f(x) = x3 − x + 3 and identify a root:

Your solution

x

y

4

−3

2

21−2 −1
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Answer

x−3 21−2 −1

y

4

2

Clearly a simple root lies between x = −2 and x = −1.

Now use one iteration of Newton-Raphson to improve the estimate of the root using x0 = −2:

Your solution

f(x) = f ′(x) = x0 =

x1 = x0 −
f(x0)

f ′(x0)
=

Answer
f(x) = x3 − x + 3, f ′(x) = 3x2 − 1 x0 = −2

∴ x1 = −2− {−8 + 2 + 3}
11

= −2 +
3

11
= −1.727

Now repeat this process for a second iteration using x1 = −1.727:

Your solution

x2 = x1 − f(x1)/f
′(x1) =

Answer

x2 = −1.727− {−(1.727)3 + 1.727 + 3}/{3(1.727)2 − 1}
= −1.727 + {(0.424)/(7.948) = −1.674

Repeat for a third iteration and state the root to 2 d.p.:

Your solution

x3 = x2 − f(x2)/f
′(x2) =

Answer

x3 = −1.674− {−(1.674)3 + 1.674 + 3}/{3(1.674)2 − 1}
= −1.674 + {0.017}/{7.407} = −1.672

We conclude the value of the simple root is −1.67 correct to 2 d.p.
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Engineering Example 5

Buckling of a strut

The equation governing the buckling load P of a strut with one end fixed and the other end simply

supported is given by tan µL = µL where µ =

√
P

EI
, L is the length of the strut and EI is the

flexural rigidity of the strut. For safe design it is important that the load applied to the strut is less
than the lowest buckling load. This equation has no exact solution and we must therefore use the
method described in this Workbook to find the lowest buckling loadP .

deflected shape

P
L

P

Figure 26

We let µL = x and so we need to solve the equation tan x = x. Before starting to apply the Newton-
Raphson iteration we must first obtain an approximate solution by plotting graphs of y = tan x and
y = x using the same axes.

y = x

y = tan x

0 π/2 π 3π/2 x

From the graph it can be seen that the solution is near to but below x = 3π/2 (∼ 4.7). We therefore
start the Newton-Raphson iteration with a value x0 = 4.5.

The equation is rewritten as tan x− x = 0. Let f(x) = tan x− x then f ′(x) = sec2 x− 1 = tan2 x

The Newton-Raphson iteration is xn+1 = xn −
tan xn − xn

tan2 xn

, x0 = 4.5

so x1 = 4.5− tan(4.5)− 4.5

tan2 4.5
= 4.5− 0.137332

21.504847
= 4.493614 to 7 sig.fig.

Rounding to 4 sig.fig. and iterating:

x2 = 4.494− tan(4.494)− 4.494

tan2 4.494
= 4.494− 0.004132

20.229717
= 4.493410 to 7 sig.fig.

So we conclude that the value of x is 4.493 to 4 sig.fig. As x = µL =
(√

P/EI
)

L we find, after

re-arrangement, that the smallest buckling load is given by P = 20.19
EI

L2
.
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Exercises

1. By sketching the function f(x) = x − 1 − sin x show that there is a simple root near x = 2.
Use two iterations of the Newton-Raphson method to obtain a better estimate of the root.

2. Obtain an estimation accurate to 2 d.p. of the point of intersection of the curves y = x − 1
and y = cos x.

Answers

1. x0 = 2, x1 = 1.936, x2 = 1.935

2. The curves intersect when x− 1− cos x = 0. Solve this using the Newton-Raphson method
with initial estimate (say) x0 = 1.2.

The point of intersection is (1.28342, 0.283437) to 6 significant figures.
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