Higher Derivatives

The derivative, $\frac{dy}{dx}$, is more expressly called the **first derivative** of y. By differentiating the first derivative, we obtain the **second derivative**; by differentiating the second derivative we obtain the **third derivative** and so on. These second and subsequent derivatives are known as **higher derivatives**. Second derivatives in particular occur frequently in engineering contexts.

Prerequisites

• be able to differentiate standard functions

Before starting this Section you should ...

Learning Outcomes

On completion you should be able to ...

• obtain higher derivatives

1. The derivative of a derivative

You have already learnt how to calculate the derivative of a function using a table of derivatives and applying some basic rules. By differentiating the function, y(x), we obtain the derivative, $\frac{dy}{dx}$. By repeating the process we can obtain higher derivatives.

Example 7 Calculate the first, second and third derivatives of $y = x^4 + 6x^2$.

Solution

The first derivative is $\frac{dy}{dx}$: first derivative = $4x^3 + 12x$ To obtain the second derivative we differentiate the first derivative. second derivative = $12x^2 + 12$ The third derivative is found by differentiating the second derivative. third derivative = 24x + 0 = 24x

2. Notation for derivatives

Just as there is a notation for the first derivative so there is a similar notation for higher derivatives. Consider the function, y(x). We know that the first derivative is $\frac{dy}{dx}$ or $\frac{d}{dx}(y)$ which is the instruction to differentiate the function y(x). The second derivative is calculated by differentiating the first derivative, that is

second derivative $= \frac{d}{dx} \left(\frac{dy}{dx} \right)$

So, using a fairly obvious adaptation of our derivative notation, the second derivative is denoted by $\frac{d^2y}{dx^2}$ and is read as 'dee two y by dee x squared'. This is often written more concisely as y''.

In similar manner, the third derivative is denoted by $\frac{d^3y}{dx^3}$ or y''' and so on. So, referring to Example 6 we could have written

first derivative
$$=$$
 $\frac{dy}{dx} = 4x^3 + 12x$
second derivative $=$ $\frac{d^2y}{dx^2} = 12x^2 + 12$
third derivative $=$ $\frac{d^3y}{dx^3} = 24x$

HELM (2008): Section 11.3: Higher Derivatives

Key Point 7 If $y = y(x)$ then its first, second and third derivatives are denoted by:								
		$\frac{dy}{dx}$ y'	$\frac{d^2y}{dx^2}$ y''	$\frac{d^3y}{dx^3}$ y''''				

In most examples we use x to denote the independent variable and y the dependent variable. However, in many applications, time t is the independent variable. In this case a special notation is used for derivatives. Derivatives with respect to t are often indicated using a **dot** notation, so $\frac{dy}{dt}$ can be written as \dot{y} , pronounced 'y dot'. Similarly, a second derivative with respect to t can be written as \ddot{y} , pronounced 'y dot'.

Task
Calculate
$$\frac{d^2y}{dt^2}$$
 and $\frac{d^3y}{dt^3}$ given $y = e^{2t} + \cos t$.

First find $\frac{dy}{dx}$:

Your solution Answer $\frac{dy}{dt} = 2e^{2t} - \sin t$

Now obtain the second derivative:

Your solution $\frac{d^2y}{dt^2} =$

Answer $4e^{2t} - \cos t$

Finally, obtain the third derivative:

Your solution

$$\frac{d^3y}{dt^3} = \frac{d}{dt} \left(\frac{d^2y}{dt^2} \right) =$$

Answer $8e^{2t} + \sin t$

Note that in the last Task we could have used the dot notation and written $\dot{y} = 2e^{2t} - \sin t$, $\ddot{y} = 4e^{2t} - \cos t$ and $\ddot{y} = 8e^{2t} + \sin t$

We may need to evaluate higher derivatives at specific points. We use an obvious notation.

The second derivative of y(x), evaluated at say, x = 2, is written as $\frac{d^2y}{dx^2}(2)$, or more simply as y''(2). The third derivative evaluated at x = -1 is written as $\frac{d^3y}{dx^3}(-1)$ or y'''(-1).

Given
$$y(x) = 2\sin x + 3x^2$$
 find (a) $y'(1)$ (b) $y''(-1)$ (c) $y'''(0)$

First find y'(x), y''(x) and y'''(x):

Your solution							
y'(x) =	y''(x) =	$y^{\prime\prime\prime} =$					
Answer							
$y'(x) = 2\cos x + 6x$	$y''(x) = -2\sin x + 6$	$y'''(x) = -2\cos x$					
Now substitute $x = 1$ in $y'(x)$ to obtain $y'(1)$:							

Your solution (a) y'(1) =

Answer

 $y'(1) = 2\cos 1 + 6(1) = 7.0806$. Remember, in $\cos 1$ the '1' is 1 radian.

Now find y''(-1):

Your solution

(b) y''(-1) =

Answer

 $y''(-1) = -2\sin(-1) + 6 = 7.6829$

Finally, find y'''(0):

Your solution

(c) y'''(0) =

Answer

 $y'''(0) = -2\cos 0 = -2.$

Exercises

- Find d²y/dx² where y(x) is defined by:
 (a) 3x² e^{2x}
 (b) sin 3x + cos x
 (c) √x
 (d) e^x + e^{-x}
 (e) 1 + x + x² + ln x
 Find d³y/dx³ where y is given in Exercise 1.
- 3. Calculate $\ddot{y}(1)$ where y(t) is given by:

(a)
$$t(t^2+1)$$
 (b) $\sin(-2t)$ (c) $2e^t + e^{2t}$ (d) $\frac{1}{t}$ (e) $\cos\frac{t}{2}$

4. Calculate $\ddot{y}(-1)$ for the functions given in Exercise 3.

Answers

1. (a)
$$6 - 4e^{2x}$$
 (b) $-9\sin 3x - \cos x$ (c) $-\frac{1}{4}x^{-3/2}$ (d) $e^x + e^{-x}$ (e) $2 - \frac{1}{x^2}$
2. (a) $-8e^{2x}$ (b) $-27\cos 3x + \sin x$ (c) $\frac{3}{8}x^{-5/2}$ (d) $e^x - e^{-x}$ (e) $\frac{2}{x^3}$
3. (a) 6 (b) 3.6372 (c) 34.9927 (d) 2 (e) -0.2194
4. (a) 6 (b) -3.3292 (c) 1.8184 (d) -6 (e) -0.0599