Argand Diagrams
and the Polar Form 10.2

m Introduction

In the first part of this Section we introduce a geometrical interpretation of a complex number. Since
a complex number z = x + iy is defined by two real numbers = and y it is natural to consider a plane
in which to place a complex number. We shall see that there is a close connection between complex
numbers and two-dimensional vectors.

In the second part of this Section we introduce an alternative form, called the polar form, for
representing complex numbers. We shall see that the polar form is particularly advantageous when
multiplying and dividing complex numbers.

f e know what a complex number is \

e be able to use trigonometric functions sin,

Q Prerequisites cos and tan

Before starting this Section you should . .. e understand what a polynomial is
k e possess a knowledge of vectors /
f e represent complex numbers on an Argand \
diagram

w Learning Outcomes

On completion you should be able to ... e multiply and divide complex numbers in polar

k form
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e obtain the polar form of a complex number




1. The argand diagram

In Section 10.1 we met a complex number z = = + iy in which x,y are real numbers and
i = —1. We learned how to combine complex numbers together using the usual operations of
addition, subtraction, multiplication and division. In this Section we examine a useful geometrical

description of complex numbers.

Since a complex number is specified by two real numbers x,y it is natural to represent a complex
number by a vector in a plane. We take the usual Oxy plane in which the ‘horizontal’ axis is the
x-axis and the ‘vertical axis is the y-axis.

w

>

Figure 3

Thus the complex number z = 2 + 3i would be represented by a line starting from the origin and
ending at the point with coordinates (2,3) and w = —1 + i is represented by the line starting from
the origin and ending at the point with coordinates (—1,1). See Figure 3. When the Ozy plane is
used in this way it is called an Argand diagram. With this interpretation the modulus of z, that is
|z| is the length of the line which represents z.

Note: An alternative interpretation is to consider the complex number a + ib to be represented by
the point (a, b) rather than the line from 0 to (a,b).

Given that z = 1 +1i, w = i, represent the three complex numbers z, w and
2z — 3w — 1 on an Argand diagram.

Your solution
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Answer
Noting that 22 — 3w — 1 =2+ 2i — 3i — 1 = 1 — i you should obtain the following diagram.

AY
1

Argand diagram

1 22z — 3w — 1

If we have two complex numbers z = a + ib, w = c + id then, as we already know
z+w=(a+c)+i(b+d)

that is, the real parts add together and the imaginary parts add together. But this is precisely what
occurs with the addition of two vectors. If p and ¢ are 2-dimensional vectors then:

p=ai+bj q=ci+dj
where i and j are unit vectors in the z- and y-directions respectively. So, using vector addition:

prqg=(a+tc)i+(b+d)j
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Figure 4

We conclude from this that addition (and hence subtraction) of complex numbers is essentially
equivalent to addition (subtraction) of two-dimensional vectors. (See Figure 4.) Because of this,
complex numbers (when represented on an Argand diagram) are slidable — as long as you keep
their length and direction the same, you can position them anywhere on an Argand diagram.

We see that the Cartesian form of a complex number: z = a + ib is a particularly suitable form for
addition (or subtraction) of complex numbers. However, when we come to consider multiplication
and division of complex numbers, the Cartesian description is not the most convenient form that is
available to us. A much more convenient form is the polar form which we now introduce.
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2. The polar form of a complex number

We have seen, above, that the complex number z = a + ib can be represented by a line pointing out
from the origin and ending at a point with Cartesian coordinates (a, b).

AY P
N

Figure 5

To locate the point P we introduce polar coordinates (r, 6) where r is the positive distance from 0
and @ is the angle measured from the positive x-axis, as shown in Figure 5. From the properties of
the right-angled triangle there is an obvious relation between (a, b) and (r,0):

a=1rcosf b=rsind

or equivalently,

b
r=+va®+b? tanf = —.

a
This leads to an alternative way of writing a complex number:

z=a+1b = rcosf +irsinf
= r(cosf +isinb)

The angle 6 is called the argument of z and written, for short, arg(z). The non-negative real number
r is the modulus of z. We normally consider # measured in radians to lie in the interval —m <0 <7
although any value 6 + 2kw for integer k£ will be equivalent to . The angle # may be expressed in
radians or degrees.

Q Key Point 6

z =r(cosf +isinf)

If 2 =a -+ ib then

in which

r=lzl =va2+b and 6 =arg(z)=tan"! b

a
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Example 4
Find the polar coordinate form of (a) z =3+ 4i (b) 2= -3 —

Solution
(a) Here

4
r=lzl=vV3+42=125=5 0 =arg(z) = tan’l(g) = 53.13°

so that 2z = 5(cos 53.13° + isin 53.13°)

(b) Here
1 (=)
=zl = (=324 (-1)2=v10~3.16 0 = arg(z) = tan 3
; S (=) (1 : :
It is natural to assume that tan m = tan 3) Using this value on your calculator (unless

it is very sophisticated) you will obtain a value of about 18.43° for tan_l(%). This is incorrect since
if we use the Argand diagram to plot z = —3 — i we get:

Ay

=Y

Figure 6
The angle 6 is clearly —180° + 18.43° = —161.57°.

This example warns us to take care when determining arg(z) purely using algebra. You will always
find it helpful to construct the Argand diagram to locate the particular quadrant into which your
complex number is pointing. Your calculator cannot do this for you.

Finally, in this example, 2z = 3.16(cos 198.43° 4 isin 198.43°).

Find the polar coordinate form of the complex numbers
(a) z=—i (b) z=3—4i

Your solution

(a)
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Answer
z = 1(cos 270° + isin 270°)

Your solution

(b)

Answer
z = 5(cos 306.87° + isin 306.87°)

Remember, to get the correct angle, draw your complex number on an Argand diagram.

Multiplication and division using polar coordinates

The reader will perhaps be wondering why we have bothered to introduce the polar form of a complex
number. After all, the calculation of arg(z) is not particularly straightforward. However, as we have
said, the polar form of a complex number is a much more convenient vehicle to use for multiplication
and division of complex numbers. To see why, let us consider two complex numbers in polar form:

z =r(cosf + isinf) w = t(cos ¢ + isin @)
Then the product zw is calculated in the usual way
zw = [r (cos@+isinf)|[t (cos¢ + isin )]
= 71t [cosf cos ¢ — sinfsin ¢ + i(sin b cos ¢ + cos @ sin ¢)]
= rt [cos(§ + ¢) +isin(0 + ¢)]
in which we have used the standard trigonometric identities
cos(f + ¢) = cosf cos ¢ — sinfsin ¢ sin(f + ¢) = sin 0 cos ¢ + cos 0 sin ¢.

We see that in calculating the product that the moduli  and ¢ multiply together whilst the arguments
arg(z) = 0 and arg(w) = ¢ add together.

If 2 =r(cosf+isinf) and w = t(cos ¢ + isin¢) find the polar expression for .
w

Your solution

Answer

z

Z = %(cos(e — ¢) +isin(f — ¢))

We see that in calculating the quotient that the moduli r and ¢ divide whilst the arguments arg(z) = 6
and arg(w) = ¢ subtract.
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‘ Key Point 7

If 2 =r(cosf +isinf) and w = t(cos ¢ + isin @) then

zw = rt(cos(d + ¢) + isin(0 + ¢)) % = ;(COS(G — ¢) +isin(d — ¢))

We conclude that addition and subtraction are most easily carried out in Cartesian form whereas
multiplication and division are most easily carried out in polar form.

Complex numbers and rotations

We have seen that, when multiplying one complex number by another, the moduli multiply together
and the arguments add together. If, in particular, w is a complex number with a modulus ¢

w = t(cos ¢ + isin ¢) (i.e.7=1)

and if z is a complex number with modulus 1

z = (cosf +isinf) (ie. r=1)
then multiplying w by z gives

wz = t(cos(0 + ¢) +isin(@ + ¢)) (using Key Point 7)

We see that the effect of multiplying w by z is to rotate the line representing the complex number
w anti-clockwise through an angle 6 which is arg(z), and preserving the length. See Figure 7.

A7 A7

multiply by z

0+ ¢

5 > 5 >

Figure 7
This result would certainly be difficult to obtain had we continued to use the Cartesian form.
Since, in terms of the polar form of a complex number
—1 = 1(cos 180° + isin 180°)

we see that multiplying a number by —1 produces a rotation through 180°. In particular multiplying
a number by —1 and then by (—1) again (i.e. (—1)(—1)) rotates the number through 180° twice,
totalling 360°, which is equivalent to leaving the number unchanged. Hence the introduction of
complex numbers has ‘explained’ the accepted (though not obvious) result  (—1)(—1) = +1.
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Exercises

1. Display, on an Argand diagram, the complex numbers 1 — i, 1 + 3i and —1 + 2i.

(1+ 30)

2. Find the polar form of (a) 1 —i, (b) 1+3i (c) 2i — 1. Hence calculate (—1+2i)
— i

3. On an Argand diagram draw the complex number 1 + 2i. By changing to polar form examine
the effect of multiplying 1 + 2i by, in turn, i, 230t Represent these new complex numbers
on an Argand diagram.

4. By utilising the Argand diagram convince yourself that |z +w| < |z| 4 |w]| for any two complex
numbers z,w. This is known as the triangle inequality.

Answers

1.
Ay 1+ 3i

21 —1

=Y

0\
1—1

2. (a) v2(cos315° +isin315°)  (b) v/10(cos 71.57° + isin 71.57°)
(c) V/5(cos 116.57° + isin 116.57°).

(1+3i)

(=1+2i) V2(cos(—45°) + isin(—45°)) = v/2(cos(45°) — isin(45°)) = (1 —i).

3. Each time you multiply through by i you effect a rotation through 90° of the line representing
the complex number 1 + 2i. After four such products you are back to where you started, at
14 2i.

4. This inequality states that no one side of a triangle is greater in length than the sum of the
lengths of the other two sides.
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