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Introduction
There are two kinds of multiplication involving vectors. The first is known as the scalar product
or dot product. This is so-called because when the scalar product of two vectors is calculated the
result is a scalar. The second product is known as the vector product. When this is calculated the
result is a vector. The definitions of these products may seem rather strange at first, but they are
widely used in applications. In this Section we consider only the scalar product.
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Prerequisites
Before starting this Section you should . . .

• know that a vector can be represented as a
directed line segment

• know how to express a vector in Cartesian
form

• know how to find the modulus of a vector'
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Learning Outcomes
On completion you should be able to . . .

• calculate, from its definition, the scalar
product of two given vectors

• calculate the scalar product of two vectors
given in Cartesian form

• use the scalar product to find the angle
between two vectors

• use the scalar product to test whether two
vectors are perpendicular
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1. Definition of the scalar product
Consider the two vectors a and b shown in Figure 29.

a

b

θ

Figure 29: Two vectors subtend an angle θ

Note that the tails of the two vectors coincide and that the angle between the vectors is labelled θ.
Their scalar product, denoted by a · b, is defined as the product |a| |b| cos θ. It is very important to
use the dot in the formula. The dot is the specific symbol for the scalar product, and is the reason
why the scalar product is also known as the dot product. You should not use a × sign in this
context because this sign is reserved for the vector product which is quite different.

The angle θ is always chosen to lie between 0 and π, and the tails of the two vectors must coincide.
Figure 30 shows two incorrect ways of measuring θ.

a

b

a

b

θ
θ

Figure 30: θ should not be measured in these ways

Key Point 9

The scalar product of a and b is: a · b = |a| |b| cos θ

We can remember this formula as:

“The modulus of the first vector, multiplied by the modulus of the second vector,

multiplied by the cosine of the angle between them.”

Clearly b · a = |b| |a| cos θ and so

a · b = b · a.

Thus we can evaluate a scalar product in any order: the operation is commutative.
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Example 8
Vectors a and b are shown in the Figure 31. Vector a has modulus 6 and vector b
has modulus 7 and the angle between them is 60◦. Calculate a.b.

a

b

60o

Figure 31

Solution

The angle between the two vectors is 60◦. Hence

a · b = |a| |b| cos θ = (6)(7) cos 60◦ = 21

The scalar product of a and b is 21. Note that a scalar product is always a scalar.

Example 9
Find i · i where i is the unit vector in the direction of the positive x axis.

Solution

Because i is a unit vector its modulus is 1. Also, the angle between i and itself is zero. Therefore

i.i = (1)(1) cos 0◦ = 1

So the scalar product of i with itself equals 1. It is easy to verify that j.j = 1 and k.k = 1.

Example 10
Find i · j where i and j are unit vectors in the directions of the x and y axes.

Solution

Because i and j are unit vectors they each have a modulus of 1. The angle between the two vectors
is 90◦. Therefore

i · j = (1)(1) cos 90◦ = 0

That is i · j = 0.
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The following results are easily verified:

Key Point 10

i · i = j · j = k · k = 1

i · j = j · i = 0

i · k = k · i = 0

j · k = k · j = 0

Generally, whenever any two vectors are perpendicular to each other their scalar product is zero
because the angle between the vectors is 90◦ and cos 90◦ = 0.

Key Point 11

The scalar product of perpendicular vectors is zero.

2. A formula for finding the scalar product
We can use the results summarized in Key Point 10 to obtain a formula for finding a scalar product
when the vectors are given in Cartesian form. We consider vectors in the xy plane. Suppose
a = a1i + a2j and b = b1i + b2j. Then

a · b = (a1i + a2j) · (b1i + b2j)

= a1i · (b1i + b2j) + a2j · (b1i + b2j)

= a1b1i · i + a1b2i · j + a2b1j · i + a2b2j · j

Using the results in Key Point 10 we can simplify this to give the following formula:
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Key Point 12

If a = a1i + a2j and b = b1i + b2j then

a · b = a1b1 + a2b2

Thus to find the scalar product of two vectors their i components are multiplied together, their j
components are multiplied together and the results are added.

Example 11
If a = 7i + 8j and b = 5i− 2j, find the scalar product a · b.

Solution

We use Key Point 12:

a · b = (7i + 8j) · (5i− 2j) = (7)(5) + (8)(−2) = 35− 16 = 19

The formula readily generalises to vectors in three dimensions as follows:

Key Point 13

If a = a1i + a2j + a3k and b = b1i + b2j + b3k then

a · b = a1b1 + a2b2 + a3b3

Example 12
If a = 5i + 3j − 2k and b = 8i− 9j + 11k, find a · b.

Solution

We use the formula in Key Point 13:

a · b = (5)(8) + (3)(−9) + (−2)(11) = 40− 27− 22 = −9

Note again that the result is a scalar: there are no i’s, j’s, or k’s in the answer.

34 HELM (2008):
Workbook 9: Vectors



®

Task

If p = 4i− 3j + 7k and q = 6i− j + 2k, find p · q.

Use Key Point 13:

Your solution

Answer

41

Task

If r = 3i + 2j + 9k find r · r. Show that this is the same as |r|2.

Your solution

Answer
r · r = (3i + 2j + 9k) · (3i + 2j + 9k) = 3i · 3i + 3i · 2j + · · · = 9 + 0 + · · · = 94.

|r| =
√

9 + 4 + 81 =
√

94, hence |r|2 = r · r.

The above result is generally true:

Key Point 14

For any vector r, |r|2 = r · r
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3. Resolving one vector along another
The scalar product can be used to find the component of a vector in the direction of another vector.
Consider Figure 32 which shows two arbitrary vectors a and n. Let n̂ be a unit vector in the direction
of n.

O

P

Q

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

a

n̂ n

projection of a onto n

θ

Figure 32
Study the figure carefully and note that a perpendicular has been drawn from P to meet n at Q.
The distance OQ is called the projection of a onto n. Simple trigonometry tells us that the length
of the projection is |a| cos θ. Now by taking the scalar product of a with the unit vector n̂ we find

a · n̂ = |a| |n̂| cos θ = |a| cos θ (since |n̂| = 1)

We conclude that

Key Point 15

Resolving One Vector Along Another

a · n̂ is the component of a in the direction of n

Example 13
Figure 33 shows a plane containing the point A which has position vector a. The
vector n̂ is a unit vector perpendicular to the plane (such a vector is called a
normal vector). Find an expression for the perpendicular distance, `, of the plane
from the origin.

O

A

a

n̂

�

n̂

Figure 33
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Solution

From the diagram we note that the perpendicular distance ` of the plane from the origin is the
projection of a onto n̂ and, using Key Point 15, is thus a · n̂.

4. Using the scalar product to find the angle between vectors
We have two distinct ways of calculating the scalar product of two vectors. From Key Point 9
a · b = |a| |b| cos θ whilst from Key Point 13 a · b = a1b1 + a2b2 + a3b3. Both methods of calculating
the scalar product are entirely equivalent and will always give the same value for the scalar product.
We can exploit this correspondence to find the angle between two vectors. The following example
illustrates the procedure to be followed.

Example 14
Find the angle between the vectors a = 5i + 3j − 2k and b = 8i− 9j + 11k.

Solution

The scalar product of these two vectors has already been found in Example 12 to be −9. The
modulus of a is

√
52 + 32 + (−2)2 =

√
38. The modulus of b is

√
82 + (−9)2 + 112 =

√
266.

Substituting these values for a · b, |a| and b into the formula for the scalar product we find

a · b = |a| |b| cos θ

−9 =
√

38
√

266 cos θ

from which

cos θ =
−9√

38
√

266
= −0.0895

so that θ = cos−1(−0.0895) = 95.14◦

In general, the angle between two vectors can be found from the following formula:

Key Point 16

The angle θ between vectors a, b is such that:

cos θ =
a · b
|a| |b|
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Exercises

1. If a = 2i− 5j and b = 3i + 2j find a · b and verify that a · b = b · a.

2. Find the angle between p = 3i− j and q = −4i + 6j.

3. Use the definition of the scalar product to show that if two vectors are perpendicular, their
scalar product is zero.

4. If a and b are perpendicular, simplify (a− 2b) · (3a + 5b).

5. If p = i + 8j + 7k and q = 3i− 2j + 5k, find p · q.

6. Show that the vectors 1
2
i + j and 2i− j are perpendicular.

7. The work done by a force F in moving a body through a displacement r is given by F · r.
Find the work done by the force F = 3i + 7k if it causes a body to move from the point with
coordinates (1, 1, 2) to the point (7, 3, 5).

8. Find the angle between the vectors i− j − k and 2i + j + 2k.

Answers

1. −4.

2. 142.1◦,

3. This follows from the fact that cos θ = 0 since θ = 90◦.

4. 3a2 − 10b2.

5. 22.

6. This follows from the scalar product being zero.

7. 39 units.

8. 101.1◦
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5. Vectors and electrostatics
Electricity is important in several branches of engineering - not only in electrical or electronic en-
gineering. For example the design of the electrostatic precipitator plates for cleaning the solid fuel
power stations involves both mechanical engineering (structures and mechanical rapping systems for
cleaning the plates) and electrostatics (to determine the electrical forces between solid particles and
plates).

The following example and tasks relate to the electrostatic forces between particles. Electric charge
is measured in coulombs (C). Charges can be either positive or negative.

The force between two charges
Let q1 and q2 be two charges in free space located at points P1 and P2. Then q1 will experience a
force due to the presence of q2 and directed from P2 towards P1.

This force is of magnitude K
q1q2

r2
where r is the distance between P1 and P2 and K is a constant.

In vector notation this coulomb force (measured in newtons) can then be expressed as F = K
q1q2

r2
r̂

where r̂ is a unit vector directed from P2 towards P1.

The constant K is known to be
1

4πε0

where ε0 = 8.854× 10−12 F m−1 (farads per metre).

The electric field

A unit charge located at a general point G will then experience a force
Kq1

r2
1

r̂1 (where r̂1 is the unit

vector directed from P1 towards G) due to a charge q1 located at P1. This is the electric field E
newtons per coulomb (N C−1 or alternatively V m−1) at G due to the presence of q1.
For several point charges q1 at P1, q2 at P2 etc., the total electric field E at G is given by

E =
Kq1

r2
1

r̂1 +
Kq2

r2
2

r̂2 + . . .

where r̂i is the unit vector directed from point Pi towards G.
From the definition of a unit vector we see that

E =
Kq1

r2
1

r1

|r1|
+

Kq2

r2
2

r2

|r2|
+ . . . =

Kq1

|r1|3
r1 +

Kq2

|r2|3
r2 + . . . =

1

4πε0

[
q1

|r1|3
r1 +

q2

|r2|3
r2 + . . .

]
where ri is the vector directed from point Pi towards G, so that r1 = OG − OP 1 etc., where OG
and OP 1 are the position vectors of G and P1 (see Figure 34).

P1 G

O

Figure 34

OP1 + P1G = OG P1G = OG−OP1

The work done

The work done W (energy expended) in moving a charge q through a distance dS, in a direction
given by the unit vector S/|S|, in an electric field E is (defined by)

W = −qE.dS (4)

where W is in joules.
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Engineering Example 1

Field due to point charges

In free space, point charge q1 = 10 nC (1 nC = 10−9C, i.e. a nanocoulomb) is at P1(0,−4, 0) and
charge q2 = 20 nC is at P2 = (0, 0, 4).

[Note: Since the x-coordinate of both charges is zero, the problem is two-dimensional in the yz plane
as shown in Figure 35.]

y

z

P2(0, 0, 4)

P1(0,−4, 0) O

k

j

Figure 35

(a) Find the field at the origin E1,2 due to q1 and q2.

(b) Where should a third charge q3 = 30 nC be placed in the yz plane so that the total field
due to q1, q2, q3 is zero at the origin?

Solution

(a) Total field at the origin E1,2 = (field at origin due to charge at P1) + (field at origin due to
charge at P2). Therefore

E1,2 =
10× 10−9

4π × 8.854× 10−12 × 42
j +

20× 10−9

4π × 8.854× 10−12 × 42
(−k) = 5.617j − 11.23k

(The negative sign in front of the second term results from the fact that the direction from P2 to
O is in the −z direction.)

(b) Suppose the third charge q3 = 30 nC is placed at P3(0, a, b). The field at the origin due to the
third charge is

E3 =
30× 10−9

4π × 8.854× 10−12 × (a2 + b2)
×

−(aj + bk)

(a2 + b2)1/2
,

where
aj + bk

(a2 + b2)1/2
is the unit vector in the direction from O to P3

If the position of the third charge is such that the total field at the origin is zero, then E3 = −E1,2.
There are two unknowns (a and b). We can write down two equations by considering the j and k
directions.
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Solution (contd.)

E3 = −269.6

[
a

(a2 + b2)3/2
j +

b

(a2 + b2)3/2
k

]
E1,2 = 5.617j − 11.23k

So

5.617 = 269.6× a

(a2 + b2)3/2
(1)

−11.23 = 269.6× b

(a2 + b2)3/2
(2)

So
a

(a2 + b2)3/2
= 0.02083 (3)

b

(a2 + b2)3/2
= −0.04165 (4)

Squaring and adding (3) and (4) gives
a2 + b2

(a2 + b2)3
= 0.002169

So

(a2 + b2) = 21.47 (5)

Substituting back from (5) into (1) and (2) gives a = 2.07 and b = −4.14, to 3 s.f.

Task

Eight point charges of 1 nC each are located at the corners of a cube in free space
which is 1 m on each side (see Figure 36). Calculate |E| at

(a) the centre of the cube

(b) the centre of any face

(c) the centre of any edge.

y

z

O

x

(1, 0, 0)

(1, 0, 1)

(0, 0, 1) (0, 1, 1)

(1, 1, 1)

(0, 1, 0)

(1, 1, 0)

A

T

S

R

D

PB

Figure 36
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Your solution

Work the problem on a separate piece of paper but record here your main results and conclusions.

Answer

(a) The field at the centre of the cube is zero because of the symmetrical distribution of the charges.

(b) Because of the symmetrical nature of the problem it does not matter which face is chosen in
order to find the magnitude of the field at the centre of a face. Suppose the chosen face has corners
located at P (1, 1, 1), T (1, 1, 0), R(0, 1, 0) and S(0, 1, 1) then the centre (C) of this face can be

seen from the diagram to be located at C

(
1

2
, 1,

1

2

)
.

The electric field at C due to the charges at the corners P, T, R and S will then be zero since the field
vectors due to equal charges located at opposite corners of the square PTRS cancel one another
out. The field at C is then due to the equal charges located at the remaining four corners (OABD)
of the cube, and we note from the symmetry of the cube, that the distance of each of these corners

from C will be the same. In particular the distance OC =

√(
1

2

)2

+ 12 +

(
1

2

)2

=
√

1.5 m. The

electric field E at C due to the remaining charges can then be found using E =
1

4πε0

4∑
1

qi · ri

|ri|3

where q1 to q4 are the equal charges (10−9 coulombs) and r1 to r4 are the vectors directed from
the four corners, where the charges are located, towards C. In this case since q1 = 10−9 coulombs
and |ri| =

√
1.5 for i = 1 to i = 4 we have

E =
1

4πε0

10−9

(1.5)3/2
[r1 + r2 + r3 + r4] ,

where r1 = AC =

 1
2

1
1
2

−

 0
0
1

 , r2 = BC =

 1
2

1
1
2

−

 1
0
1

 etc.

Thus E =
1

4πε0

10−9

(1.5)3/2

 0
4
0


and |E| =

1

πε0

10−9

(1.5)3/2
=

10−9

π × 8.854× 10−12(1.5)3/2
= 19.57 V m−1
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Answer

(c) Suppose the chosen edge to be used connects A(0, 0, 1) to B(1, 0, 1) then the centre point (G)

will be located at G

(
1

2
, 0, 1

)
.

By symmetry the field at G due to the charges at A and B will be zero.
We note that the distances DG, OG, PG and SG are all equal. In the case of OG we calculate

by Pythagoras that this distance is

√(
1

2

)2

+ 02 + 12 =
√

1.25.

Similarly the distances TG and RG are equal to
√

2.25.

Using the result that E =
1

4πε0

∑ qiri

|ri|3
gives

E =
10−9

4πε0

 1

(1.25)3/2


 −1

2

0
1

 +

 1
2

0
1

 +

 −1
2

−1
0

 +

 1
2

−1
0


+

1

(2.25)3/2


 −1

2

−1
1

 +

 1
2

−1
1




=
10−9

4πε0

 1

(1.25)3/2

 0
−2
2

 +
1

(2.25)3/2

 0
−2
2



=
10−9

4πε0

 0
−2.02367
2.02367


Thus |E| =

10−9

4× π × 8.854× 10−12

√
02 + (−2.02367)2 + (2.02367)2

= 25.72 V m−1 (2 d.p.).
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Task

If E = −50i − 50j + 30k V m−1 where i, j and k are unit vectors in the x, y
and z directions respectively, find the differential amount of work done in moving
a 2µC point charge a distance of 5 mm.

(a) From P (1, 2, 3) towards Q(2, 4, 1)

(b) From Q(2, 4, 1) towards P (1, 2, 3)

Your solution

Answer

(a) The work done in moving a 2µC charge through a distance of 5 mm towards Q is

W = −qE.ds = −(2× 10−6)(5× 10−3)E.
PQ

|PQ|

= −10−8(−50i− 50j + 30k) ·
(i + 2j − 2k)√
12 + 22 + (−2)2

=
10−8(50 + 100 + 60)

3
= 7× 10−7J

(b) A similar calculation yields that the work done in moving the same charge through the
same distance in the direction from Q to P is W = −7× 10−7J
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