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Learning 

In this Workbook you will learn about some of the basic building blocks of mathematics.

As well as becoming familiar with the notation and symbols used in mathematics you

will learn the fundamental rules of algebra upon which much of mathematics is based.

In particular you will learn about indices and how to simplify algebraic expressions, 

using a variety of approaches: collecting like terms, removing brackets and factorisation.

Finally, you will learn how to transpose formulae.

outcomes



Mathematical Notation
and Symbols

�
�

�
�1.1

Introduction
This introductory Section reminds you of important notations and conventions used throughout
engineering mathematics. We discuss the arithmetic of numbers, the plus or minus sign, ±, the
modulus notation | |, and the factorial notation !. We examine the order in which arithmetical
operations are carried out. Symbols are introduced to represent physical quantities in formulae and
equations. The topic of algebra deals with the manipulation of these symbols. The Section closes
with an introduction to algebraic conventions. In what follows a working knowledge of the addition,
subtraction, multiplication and division of numerical fractions is essential.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• be able to add, subtract, multiply and divide
fractions

• be able to express fractions in equivalent
forms�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• recognise and use a wide range of common
mathematical symbols and notations
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1. Numbers, operations and common notations
A knowledge of the properties of numbers is fundamental to the study of engineering mathematics.
Students who possess this knowledge will be well-prepared for the study of algebra. Much of the
terminology used throughout the rest of this Section can be most easily illustrated by applying it to
numbers. For this reason we strongly recommend that you work through this Section even if the
material is familiar.

The number line
A useful way of picturing numbers is to use a number line. Figure 1 shows part of this line. Positive
numbers are represented on the right-hand side of this line, negative numbers on the left-hand side.
Any whole or fractional number can be represented by a point on this line which is also called the
real number line, or simply the real line. Study Figure 1 and note that a minus sign is always
used to indicate that a number is negative, whereas the use of a plus sign is optional when describing
positive numbers.

The line extends indefinitely both to the left and to the right. Mathematically we say that the line
extends from minus infinity to plus infinity. The symbol for infinity is ∞.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

− 3

2 2.5 π

Figure 1: Numbers can be represented on a number line

The symbol > means ‘greater than’; for example 6 > 4. Given any number, all numbers to the right
of it on the number line are greater than the given number. The symbol < means ‘less than’; for
example −3 < 19. We also use the symbols ≥ meaning ‘greater than or equal to’ and ≤ meaning
‘less than or equal to’. For example, 7 ≤ 10 and 7 ≤ 7 are both true statements.

Sometimes we are interested in only a small section, or interval, of the real line. We write [1, 3] to
denote all the real numbers between 1 and 3 inclusive, that is 1 and 3 are included in the interval.
Therefore the interval [1, 3] consists of all real numbers x, such that 1 ≤ x ≤ 3. The square brackets,
[, ] mean that the end-points are included in the interval and such an interval is said to be closed.
We write (1, 3) to represent all real numbers between 1 and 3, but not including the end-points. Thus
(1, 3) means all real numbers x such that 1 < x < 3, and such an interval is said to be open. An
interval may be closed at one end and open at the other. For example, (1, 3] consists of all numbers
x such that 1 < x ≤ 3. Intervals can be represented on a number line. A closed end-point is
denoted by •; an open end-point is denoted by ◦. The intervals (−6,−4), [−1, 2] and (3, 4] are
illustrated in Figure 2.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7−6

Figure 2: The intervals (−6,−4), [−1, 2] and (3, 4] depicted on the real line
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2. Calculation with numbers

To perform calculations with numbers we use the operations, +, −, × and ÷.

Addition (+)
We say that 4+5 is the sum of 4 and 5. Note that 4+5 is equal to 5+4 so that the order in which
we write down the numbers does not matter when we are adding them. Because the order does not
matter, addition is said to be commutative. This first property is called commutativity.

When more than two numbers are to be added, as in 4 + 8 + 9, it makes no difference whether we
add the 4 and 8 first to get 12 + 9, or whether we add the 8 and 9 first to get 4 + 17. Whichever
way we work we will obtain the same result, 21. Addition is said to be associative. This second
property is called associativity.

Subtraction (−)

We say that 8 − 3 is the difference of 8 and 3. Note that 8 − 3 is not the same as 3 − 8 and
so the order in which we write down the numbers is important when we are subtracting them i.e.
subtraction is not commutative. Subtracting a negative number is equivalent to adding a positive
number, thus 7− (−3) = 7 + 3 = 10.

The plus or minus sign (±)

In engineering calculations we often use the notation plus or minus, ±. For example, we write
12 ± 8 as shorthand for the two numbers 12 + 8 and 12 − 8, that is 20 and 4. If we say a number
lies in the range 12± 8 we mean that the number can lie between 4 and 20 inclusive.

Multiplication (×)

The instruction to multiply, or obtain the product of, the numbers 6 and 7 is written 6×7. Sometimes
the multiplication sign is missed out altogether and we write (6)(7).

Note that (6)(7) is the same as (7)(6) so multiplication of numbers is commutative. If we are
multiplying three numbers, as in 2× 3× 4, we obtain the same result whether we multiply the 2 and
3 first to obtain 6 × 4, or whether we multiply the 3 and 4 first to obtain 2 × 12. Either way the
result is 24. Multiplication of numbers is associative.

Recall that when multiplying positive and negative numbers the sign of the result is given by the
rules given in Key Point 1.

Key Point 1

Multiplication

When multiplying numbers:

positive × positive = positive negative × negative = positive
positive × negative = negative negative × positive = negative

4 HELM (2008):
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For example, (−4)× 5 = −20, and (−3)× (−6) = 18.

When dealing with fractions we sometimes use the word ‘of’ as in ‘find
1

2
of 36’. In this context ‘of’

is equivalent to multiply, that is

1

2
of 36 is equivalent to

1

2
× 36 = 18

Division (÷) or (/)

The quantity 8 ÷ 4 means 8 divided by 4. This is also written as 8/4 or
8

4
and is known as the

quotient of 8 and 4. In the fraction
8

4
the top line is called the numerator and the bottom line is

called the denominator. Note that 8/4 is not the same as 4/8 and so the order in which we write
down the numbers is important. Division is not commutative.

When dividing positive and negative numbers, recall the following rules in Key Point 2 for determining
the sign of the result:

Key Point 2

Division

When dividing numbers:

positive

positive
= positive

positive

negative
= negative

negative

positive
= negative

negative

negative
= positive

The reciprocal of a number

The reciprocal of a number is found by inverting it. If the number
2

3
is inverted we get

3

2
. So the

reciprocal of
2

3
is

3

2
. Because we can write 4 as

4

1
, the reciprocal of 4 is

1

4
.

HELM (2008):
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Task

State the reciprocal of (a)
6

11
, (b)

1

5
, (c) −7.

Your solution

(a) (b) (c)

Answer

(a)
11

6
(b)

5

1
(c) −1

7

The modulus notation (||| |||)
We shall make frequent use of the modulus notation | |. The modulus of a number is the size of
that number regardless of its sign. For example |4| is equal to 4, and | − 3| is equal to 3. The
modulus of a number is thus never negative.

Task

State the modulus of (a) −17, (b)
1

5
, (c) −1

7
(d) 0.

Your solution

(a) (b) (c) (d)

Answer

The modulus of a number is found by ignoring its sign. (a) 17 (b)
1

5
(c)

1

7
(d) 0

The factorial symbol (!)
Another commonly used notation is the factorial, denoted by the exclamation mark ‘!’. The number
5!, read ‘five factorial’, or ‘factorial five’, is a shorthand notation for the expression 5× 4× 3× 2× 1,
and the number 7! is shorthand for 7 × 6 × 5 × 4 × 3 × 2 × 1. Note that 1! equals 1, and by
convention 0! is defined as 1 also. Your scientific calculator is probably able to evaluate factorials of
small integers. It is important to note that factorials only apply to positive integers.

Key Point 3

Factorial notation

If n is a positive integer then n! = n× (n− 1)× (n− 2) . . . 5× 4× 3× 2× 1

6 HELM (2008):
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Example 1
(a) Evaluate 4! and 5! without using a calculator.

(b) Use your calculator to find 10!.

Solution

(a) 4! = 4 × 3 × 2 × 1 = 24. Similarly, 5! = 5 × 4 × 3 × 2 × 1 = 120. Note that
5! = 5× 4! = 5× 24 = 120.

(b) 10! = 3, 628, 800.

Task

Find the factorial button on your calculator and hence compute 11!.

(The button may be marked ! or n!). Check that 11! = 11× 10!

Your solution

11! = 11× 10! =

Answer
11! = 39916800

11× 10! = 11× 3628800 = 39916800

3. Rounding to nnn decimal places
In general, a calculator or computer is unable to store every decimal place of a real number. Real
numbers are rounded. To round a number to n decimal places we look at the (n+ 1)th digit in the
decimal expansion of the number.

• If the (n + 1)th digit is 0, 1, 2, 3 or 4 then we round down: that is, we simply chop to n
places. (In other words we neglect the (n+ 1)th digit and any digits to its right.)

• If the (n + 1)th digit is 5, 6, 7, 8 or 9 then we round up: we add 1 to the nth decimal place
and then chop to n places.

For example

1

3
= 0.3333 rounded to 4 decimal places

8

3
= 2.66667 rounded to 5 decimal places

π = 3.142 rounded to 3 decimal places

2.3403 = 2.340 rounded to 3 decimal places

HELM (2008):
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Sometimes the phrase ‘decimal places’ is abbreviated to ‘d.p.’ or ‘dec.pl.’.

Example 2
Write down each of these numbers rounded to 4 decimal places:
0.12345, −0.44444, 0.5555555, 0.000127351, 0.000005, 123.456789

Solution

0.1235, −0.4444, 0.5556, 0.0001, 0.0000, 123.4568

Task

Write down each of these numbers, rounded to 3 decimal places:
0.87264, 0.1543, 0.889412, −0.5555, 45.6789, 6.0003

Your solution

Answer

0.873, 0.154, 0.889, −0.556, 45.679, 6.000

4. Rounding to nnn significant figures
This process is similar to rounding to decimal places but there are some subtle differences.

To round a number to n significant figures we look at the (n + 1)th digit in the decimal expansion
of the number.

• If the (n + 1)th digit is 0, 1, 2, 3 or 4 then we round down: that is, we simply chop to n
places, inserting zeros if necessary before the decimal point. (In other words we neglect the
(n+ 1)th digit and any digits to its right.)

• If the (n + 1)th digit is 5, 6, 7, 8 or 9 then we round up: we add 1 to the nth decimal place
and then chop to n places, inserting zeros if necessary before the decimal point.

Examples are given on the next page.

8 HELM (2008):
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1

3
= 0.3333 rounded to 4 significant figures

8

3
= 2.66667 rounded to 6 significant figures

π = 3.142 rounded to 4 significant figures

2136 = 2000 rounded to 1 significant figure

36.78 = 37 rounded to 2 significant figures

6.2399 = 6.240 rounded to 4 significant figures

Sometimes the phrase “significant figures” is abbreviated as “s.f.” or “sig.fig.”

Example 3
Write down each of these numbers, rounding them to 4 significant figures:
0.12345, −0.44444, 0.5555555, 0.000127351, 25679, 123.456789, 3456543

Solution

0.1235, −0.4444, 0.5556, 0.0001274, 25680, 123.5, 3457000

Task

Write down each of these numbers rounded to 3 significant figures:
0.87264, 0.1543, 0.889412, −0.5555, 2.346, 12343.21, 4245321

Your solution

Answer

0.873, 0.154, 0.889, −0.556, 2.35, 12300, 4250000

Arithmetical expressions
A quantity made up of numbers and one or more of the operations +, −, × and / is called an
arithmetical expression. Frequent use is also made of brackets, or parentheses, ( ), to sepa-
rate different parts of an expression. When evaluating an expression it is conventional to evaluate
quantities within brackets first. Often a division line implies bracketed quantities. For example in the

expression
3 + 4

7 + 9
there is implied bracketing of the numerator and denominator i.e. the expression

is
(3 + 4)

(7 + 9)
and the bracketed quantities would be evaluated first resulting in the number

7

16
.

HELM (2008):
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The BODMAS rule
When several arithmetical operations are combined in one expression we need to know in which order
to perform the calculation. This order is found by applying rules known as precedence rules which
specify which operation has priority. The convention is that bracketed expressions are evaluated first.
Any multiplications and divisions are then performed, and finally any additions and subtractions. For
short, this is called the BODMAS rule.

Key Point 4

The BODMAS rule

Brackets, ( ) First priority: evaluate terms within brackets

Of, ×
Division, ÷ Second priority: carry out all multiplications and divisions

Multiplication, ×

Addition, + Third priority: carry out all additions and subtractions

Subtraction, −

If an expression contains only multiplication and division we evaluate by working from left to right.
Similarly, if an expression contains only addition and subtraction we evaluate by working from left to
right. In Section 1.2 we will meet another operation called exponentiation, or raising to a power. We
shall see that, in the simplest case, this operation is repeated multiplication and it is usually carried
out once any brackets have been evaluated.

Example 4
Evaluate 4− 3 + 7× 2

Solution

The BODMAS rule tells us to perform the multiplication before the addition and subtraction. Thus

4− 3 + 7× 2 = 4− 3 + 14

Finally, because the resulting expression contains just addition and subtraction we work from the
left to the right, that is

4− 3 + 14 = 1 + 14 = 15

10 HELM (2008):
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Task

Evaluate 4 + 3× 7 using the BODMAS rule to decide which operation to carry
out first.

Your solution

4 + 3× 7 =

Answer

25 (Multiplication has a higher priority than addition.)

Task

Evaluate (4− 2)× 5.

Your solution

(4− 2)× 5 =

Answer

2× 5 = 10. (The bracketed quantity must be evaluated first.)

Example 5
Evaluate 8÷ 2− (4− 5)

Solution

The bracketed expression is evaluated first:

8÷ 2− (4− 5) = 8÷ 2− (−1)

Division has higher priority than subtraction and so this is carried out next giving

8÷ 2− (−1) = 4− (−1)

Subtracting a negative number is equivalent to adding a positive number. Thus

4− (−1) = 4 + 1 = 5

HELM (2008):
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Task

Evaluate
9− 4

25− 5
.

(Remember that the dividing line implies that brackets are present around the
numerator and around the denominator.)

Your solution

Answer
9− 4

25− 5
=

(9− 4)

(25− 5)
=

5

20
=

1

4

Exercises

1. Draw a number line and on it label points to represent −5, −3.8, −π, −5

6
, −1

2
, 0,

√
2, π, 5.

2. Simplify without using a calculator (a) −5×−3, (b) −5× 3, (c) 5×−3, (d) 15×−4,

(e) −14×−3, (f)
18

−3
, (g)

−21

7
, (h)

−36

−12
.

3. Evaluate (a) 3 + 2× 6, (b) 3− 2− 6, (c) 3 + 2− 6, (d) 15− 3× 2, (e) 15× 3− 2,
(f) (15÷ 3) + 2, (g) 15÷ 3 + 2, (h) 7 + 4− 11− 2, (i) 7× 4 + 11× 2, (j) −(−9),
(k) 7− (−9), (l) −19− (−7), (m) −19 + (−7).

4. Evaluate (a) | − 18|, (b) |4|, (c) | − 0.001|, (d) |0.25|, (e) |0.01 − 0.001|, (f) 2!,

(g) 8!− 3!, (h)
9!

8!
.

5. Evaluate (a) 8 + (−9), (b) 18− (−8), (c) −18 + (−2), (d) −11− (−3)

6. State the reciprocal of (a) 8, (b)
9

13
.

7. Evaluate (a) 7±3, (b) 16±7, (c) −15± 1

2
, (d) −16±0.05, (e) |−8|±13,

(f) | − 2| ± 8.

8. Which of the following statements are true ?

(a) −8 ≤ 8, (b) −8 ≤ −8, (c) −8 ≤ |8|, (d) | − 8| < 8, (e) | − 8| ≤ −8,
(f) 9! ≤ 8!, (g) 8! ≤ 10!.

9. Explain what is meant by saying that addition of numbers is (a) associative, (b) commutative.
Give examples.

10. Explain what is meant by saying that multiplication of numbers is (a) associative, (b) commu-
tative. Give examples.

12 HELM (2008):
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Answers

1.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

−3.8 − π − 5

6
√

2 π− 1

2

2. (a) 15, (b) −15, (c) −15, (d) −60, (e) 42, (f) −6, (g) −3, (h) 3.

3. (a) 15, (b) −5, (c) −1, (d) 9, (e) 43, (f) 7, (g) 7, (h) −2, (i) 50, (j) 9, (k) 16, (l) −12,
(m) −26

4. (a) 18, (b) 4, (c) 0.001, (d) 0.25, (e) 0.009, (f) 2, (g) 40314, (h) 9,

5. (a) −1, (b) 26, (c) −20, (d) −8

6. (a)
1

8
, (b)

13

9
.

7. (a) 4,10, (b) 9,23, (c) −15
1

2
, −14

1

2
, (d) −16.05,−15.95, (e) −5, 21, (f) −6, 10

8. (a), (b), (c), (g) are true.

9. For example (a) (1 + 2) + 3 = 1 + (2 + 3), and both are equal to 6. (b) 8 + 2 = 2 + 8.

10. For example (a) (2× 6)× 8 = 2× (6× 8), and both are equal to 96. (b) 7× 5 = 5× 7.

5. Using symbols
Mathematics provides a very rich language for the communication of engineering concepts and ideas,
and a set of powerful tools for the solution of engineering problems. In order to use this language it
is essential to appreciate how symbols are used to represent physical quantities, and to understand
the rules and conventions which have been developed to manipulate these symbols.

The choice of which letters or other symbols to use is largely up to the user although it is helpful to
choose letters which have some meaning in any particular context. For instance if we wish to choose
a symbol to represent the temperature in a room we might use the capital letter T . Similarly the
lower case letter t is often used to represent time. Because both time and temperature can vary we
refer to T and t as variables.

In a particular calculation some symbols represent fixed and unchanging quantities and we call these
constants. Often we reserve the letters x, y and z to stand for variables and use the earlier letters
of the alphabet, such as a, b and c, to represent constants. The Greek letter pi, written π, is used to
represent the constant 3.14159.... which appears for example in the formula for the area of a circle.
Other Greek letters are frequently used as symbols, and for reference, the Greek alphabet is given in
Table 1.

HELM (2008):
Section 1.1: Mathematical Notation and Symbols

13



Table 1: The Greek alphabet

A α alpha I ι iota P ρ rho
B β beta Λ λ lambda T τ tau
Γ γ gamma K κ kappa Σ σ sigma
∆ δ delta M µ mu Υ υ upsilon
E ε epsilon N ν nu Φ φ phi
Z ζ zeta Ξ ξ xi X χ chi
H η eta O o omicron Ψ ψ psi
Θ θ theta Π π pi Ω ω omega

Mathematics is a very precise language and care must be taken to note the exact position of any
symbol in relation to any other. If x and y are two symbols, then the quantities xy, xy, xy can all
mean different things. In the expression xy you will note that the symbol y is placed to the right of
and slightly higher than the symbol x. In this context y is called a superscript. In the expression
xy, y is placed lower than and to the right of x, and is called a subscript.

Example The temperature in a room is measured at four points as shown in Figure 3.

T1

T3

T4

T2

Figure 3: The temperature is measured at four points

Rather than use different letters to represent the four measurements we can use one symbol, T ,
together with four subscripts to represent the temperature. Thus the four measurements are denoted
by T1, T2, T3 and T4.

6. Combining numbers together using +++,−−−,×××,÷÷÷

Addition (+)
If the letters x and y represent two numbers, then their sum is written as x+ y. Note that x+ y is
the same as y + x just as 4 + 7 is equal to 7 + 4.

Subtraction (−)
Subtracting y from x yields x − y. Note that x − y is not the same as y − x just as 11 − 7 is not
the same as 7− 11, however in both cases the difference is said to be 4.

14 HELM (2008):
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Multiplication (×)
The instruction to multiply x and y together is written as x × y. Usually the multiplication sign is
omitted and we write simply xy. An alternative notation is to use a dot to represent multiplication
and so we could write x.y The quantity xy is called the product of x and y. As discussed earlier
multiplication is both commutative and associative:

i.e. x× y = y × x and (x× y)× z = x× (y × z)

This last expression can thus be written x × y × z without ambiguity. When mixing numbers and
symbols it is usual to write the numbers first. Thus 3× x× y × 4 = 3× 4× x× y = 12xy.

Example 6
Simplify (a) 9(2y), (b) −3(5z), (c) 4(2a), (d) 2x× (2y).

Solution

(a) Note that 9(2y) means 9×(2×y). Because of the associativity of multiplication 9×(2×y)
means the same as (9× 2)× y, that is 18y.

(b) −3(5z) means −3× (5× z). Because of associativity this is the same as (−3× 5)× z,
that is −15z.

(c) 4(2a) means 4× (2× a). We can write this as (4× 2)× a, that is 8a.

(d) Because of the associativity of multiplication, the brackets are not needed and we can
write 2x× (2y) = 2x× 2y which equals

2× x× 2× y = 2× 2× x× y = 4xy.

Example 7
What is the distinction between 9(−2y) and 9− 2y ?

Solution

The expression 9(−2y) means 9 × (−2y). Because of associativity of multiplication we can write
this as 9× (−2)× y which equals −18y.

On the other hand 9− 2y means subtract 2y from 9. This cannot be simplified.

HELM (2008):
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Division (÷)

The quantity x ÷ y means x divided by y. This is also written as x/y or
x

y
and is known as the

quotient of x and y. In the expression
x

y
the symbol x is called the numerator and the symbol y

is called the denominator. Note that x/y is not the same as y/x. Division by 1 leaves a quantity

unchanged so that
x

1
is simply x.

Algebraic expressions

A quantity made up of symbols and the operations +, −, × and / is called an algebraic expression.
One algebraic expression divided by another is called an algebraic fraction. Thus

x+ 7

x− 3
and

3x− y

2x+ z

are algebraic fractions. The reciprocal of an algebraic fraction is found by inverting it. Thus the

reciprocal of
2

x
is
x

2
. The reciprocal of

x+ 7

x− 3
is
x− 3

x+ 7
.

Example 8
State the reciprocal of each of the following expressions:

(a)
y

z
, (b)

x+ z

a− b
, (c) 3y, (d)

1

a+ 2b
, (e) −1

y

Solution

(a)
z

y
.

(b)
a− b

x+ z
.

(c) 3y is the same as
3y

1
so the reciprocal of 3y is

1

3y
.

(d) The reciprocal of
1

a+ 2b
is
a+ 2b

1
or simply a+ 2b.

(e) The reciprocal of −1

y
is −y

1
or simply −y.

Finding the reciprocal of complicated expressions can cause confusion. Study the following Example
carefully.

16 HELM (2008):
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Example 9
Obtain the reciprocal of:

(a) p+ q, (b)
1

R1

+
1

R2

Solution

(a) Because p + q can be thought of as
p+ q

1
its reciprocal is

1

p+ q
. Note in particular

that the reciprocal of p + q is not
1

p
+

1

q
. This distinction is important and a common

cause of error. To avoid an error carefully identify the numerator and denominator in the
original expression before inverting.

(b) The reciprocal of
1

R1

+
1

R2

is
1

1

R1

+
1

R2

. To simplify this further requires knowledge of

the addition of algebraic fractions which is dealt with in 1.4. It is important to

note that the reciprocal of
1

R1

+
1

R2

is not R1 +R2.

The equals sign (=)

The equals sign, =, is used in several different ways.

Firstly, an equals sign is used in equations. The left-hand side and right-hand side of an equation
are equal only when the variable involved takes specific values known as solutions of the equation.
For example, in the equation x− 8 = 0, the variable is x. The left-hand side and right-hand side are
only equal when x has the value 8. If x has any other value the two sides are not equal.

Secondly, the equals sign is used in formulae. Physical quantities are often related through a formula.
For example, the formula for the length, C, of the circumference of a circle expresses the relationship
between the circumference of the circle and its radius, r. This formula states C = 2πr. When used
in this way the equals sign expresses the fact that the quantity on the left is found by evaluating the
expression on the right.

Thirdly, an equals sign is used in identities. An identity looks just like an equation, but it is true
for all values of the variable. We shall see shortly that (x − 1)(x + 1) = x2 − 1 for any value of x
whatsoever. This mean that the quantity on the left means exactly the same as that on the right
whatever the value of x. To distinguish this usage from other uses of the equals symbol it is more
correct to write (x − 1)(x + 1) ≡ x2 − 1, where ≡ means ‘is identically equal to’. However, in
practice, the equals sign is often used. We will only use ≡ where it is particularly important to do
so.
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The ‘not equals’ sign (6=)
The sign 6= means ‘is not equal to’. For example, 5 6= 6, 7 6= −7.

The notation for the change in a variable (δδδ)
The change in the value of a quantity is found by subtracting its initial value from its final value.
For example, if the temperature of a mixture is initially 13◦C and at a later time is found to be 17◦C,
the change in temperature is 17 − 13 = 4◦C. The Greek letter δ is often used to indicate such a
change. If x is a variable we write δx to stand for a change in the value of x. We sometimes refer
to δx as an increment in x. For example if the value of x changes from 3 to 3.01 we could write
δx = 3.01 − 3 = 0.01. It is important to note that this is not the product of δ and x, rather the
whole symbol ‘δx’ means ‘the increment in x’.

Sigma (or summation) notation (
∑

)

This provides a concise and convenient way of writing long sums.
The sum

x1 + x2 + x3 + x4 + . . .+ x11 + x12

is written using the capital Greek letter sigma,
∑

, as

12∑
k=1

xk

The symbol
∑

stands for the sum of all the values of xk as k ranges from 1 to 12. Note that
the lower-most and upper-most values of k are written at the bottom and top of the sigma sign
respectively.

Example 10

Write out explicitly what is meant by
5∑

k=1

k3.

Solution

We must let k range from 1 to 5.
5∑

k=1

k3 = 13 + 23 + 33 + 43 + 53
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®

Task

Express
1

1
+

1

2
+

1

3
+

1

4
concisely using sigma notation.

Each term has the form
1

k
where k varies from 1 to 4. Write down the sum using the sigma notation:

Your solution
1

1
+

1

2
+

1

3
+

1

4
=

Answer
4∑

k=1

1

k

Example 11

Write out explicitly (a)
3∑

k=1

1, (b)
4∑

k=0

2.

Solution

(a) Here k does not appear explicitly in the terms to be added. This means add the constant 1,
three times.

3∑
k=1

1 = 1 + 1 + 1 = 3

In general
n∑

k=1

1 = n.

(b) Here k starts at zero so there are n+ 1 terms where n = 4:

4∑
k=0

2 = 2 + 2 + 2 + 2 + 2 = 10
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Exercises

1. State the reciprocal of (a) x, (b)
1

z
, (c) xy, (d)

1

xy
, (e) a+ b, (f)

2

a+ b

2. The pressure p in a reaction vessel changes from 35 pascals to 38 pascals. Write down the
value of δp.

3. Express as simply as possible (a) (−3)× x× (−2)× y, (b) 9× x× z × (−5).

4. Simplify (a) 8(2y), (b) 17x(−2y), (c) 5x(8y), (d) 5x(−8y)

5. What is the distinction between 5x(2y) and 5x− 2y ?

6. The value of x is 100± 3. The value of y is 120± 5. Find the maximum and minimum values
of

(a) x+ y, (b) xy, (c)
x

y
, (d)

y

x
.

7. Write out explicitly (a)
n∑

i=1

fi, (b)
n∑

i=1

fixi.

8. By writing out the terms explicitly show that
5∑

k=1

3k = 3
5∑

k=1

k

9. Write out explicitly
3∑

k=1

y(xk)δxk.

Answers

1. (a)
1

x
, (b) z, (c)

1

xy
, (d) xy, (e)

1

a+ b
, (f)

a+ b

2
.

2. δp = 3 pascals.

3. (a) 6xy, (b) −45xz

4. (a) 16y, (b) −34xy, (c) 40xy, (d) −40xy

5. 5x(2y) = 10xy, 5x− 2y cannot be simplified.

6. (a) max 228, min 212, (b) 12875, 11155, (c) 0.8957, 0.7760, (d) 1.2887, 1.1165

7. (a)
n∑

i=1

fi = f1 + f2 + . . .+ fn−1 + fn,

(b)
n∑

i=1

fixi = f1x1 + f2x2 + . . .+ fn−1xn−1 + fnxn.

9. y(x1)δx1 + y(x2)δx2 + y(x3)δx3.
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