MAS6002DIST.tex

SOME DISCRETE DISTRIBUTIONS

Name	Genesis	Notation	p.f.	$\mathbf{E}(\mathbf{X})$	$\mathbf{V}(\mathbf{X})$	Applications	Comments
Uniform (discrete)	Set of k equally likely outcomes (usually, not necessarily, the integers)	U(1,, k) (not standard)	p(x) = 1/k $x = 1, \dots, k$	$\frac{k+1}{2}$	$\frac{k^2 - 1}{12}$	Dice	
Bernoulli trial	Expt. with two outcomes: 'success' w.p. θ and 'failure' w.p. $1 - \theta$ $X \equiv$ no. successes	$\mathrm{Ber}(heta)$	$p(x) = \theta^{x} (1 - \theta)^{1 - x}$ x = 0, 1 $\theta \in [0, 1]$	θ	heta(1- heta)	Coins, constituent of more complex dis- tributions	
Binomial	$X \equiv$ no. successes in n ind. $Ber(\theta)$ trials	${ m Bi}(n, heta)$	$p(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$ x = 0, 1, 2,, n $\theta \in [0, 1]$	n heta	n heta(1- heta)	Sampling with re- placement	$\operatorname{Bi}(1,\theta) \equiv \operatorname{Ber}(\theta)$
Geometric	$X \equiv$ no. failures until 1st success in sequence of ind. $Ber(\theta)$ trials	$\operatorname{Ge}(heta)$	$p(x) = \theta (1 - \theta)^x$ $x = 0, 1, 2, \dots$ $\theta \in [0, 1]$	$\frac{1-\theta}{\theta}$	$\frac{1-\theta}{\theta^2}$	Waiting times (for single events)	Alternative formulation in terms of $Y \equiv$ no. of trials to 1st success $(Y = X + 1)$
Negative binomial (or Pascal)	$X \equiv$ no. failures to <i>m</i> th success in sequence of ind. Ber(θ) trials. Generaliza- tion of Geometric	Neg $\operatorname{Bi}(m, \theta)$ (not standard)	$p(x) = {\binom{m+x-1}{x}} \theta^m (1-\theta)^x$ $x = 0, 1, 2, \dots$ $\theta \in [0, 1]$	$\frac{m(1-\theta)}{\theta}$	$\frac{m(1-\theta)}{\theta^2}$	Waiting times (for compound events)	Neg Bi $(1, \theta) \equiv \text{Ge}(\theta)$ Remains valid for any $k > 0$ (not necessarily integer). Alternative formulation as above.
Hypergeometric	$X \equiv$ no. of defectives in sample of size <i>n</i> taken without replacement from population of size <i>N</i> of which <i>d</i> are defective	Hypergeom (N, d, n) (not standard, esp. order of arguments)	$p(x) = \frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}}$ $x = \max(0, n+d-N),, \min(n, d)$	$\frac{nd}{N}$	$\frac{N-n}{N-1}n\frac{d}{N}\left(1-\frac{d}{N}\right)$	Sampling without replacement	Sampling with replacement leads to the $\operatorname{Bi}(n, \frac{d}{N})$ - a suitable approx if $\frac{n}{N} < 0.1$
Poisson	Arises empirically or via Poisson Process (PP) for counting events. For PP rate ν the no. of events in time $t \sim \text{Po}(\nu t)$. Also as an approx. to the Binomial	$\operatorname{Po}(\lambda)$	$p(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ $x = 0, 1, 2, \dots$ $\lambda > 0$	λ	λ	Counting events occurring 'at random' in space or time	$ \begin{array}{l} \mathrm{Bi}(n,\theta) \equiv \mathrm{Po}(n\theta) \text{ if } n \text{ large,} \\ \theta \text{ small} \end{array} $

SOME CONTINUOUS DISTRIBUTIONS

Name	Notation	p.d.f.	$\mathbf{E}(\mathbf{X})$	$\mathbf{V}(\mathbf{X})$	Applications	Comments
Uniform (continuous) (or Rectangular)	$\operatorname{Un}(\alpha,\beta)$	$ \begin{aligned} f(x) &= \frac{1}{\beta - \alpha} \\ x &\in [\alpha, \beta] \\ \alpha &< \beta \end{aligned} $	$\boxed{\frac{\alpha+\beta}{2}}$	$\frac{(\beta - \alpha)^2}{12}$	Rounding errors $Un(-\frac{1}{2},\frac{1}{2}).$ Simulating other distribu- tions from $Un(0,1).$	
Exponential	$\operatorname{Ex}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x > 0$ $\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Inter-event times for Pois- son Process. Models life- times of non-ageing items.	Alternative parameterization in terms of $1/\lambda$ $Ga(1,\lambda) \equiv Ex(\lambda)$
Gamma	$\operatorname{Ga}(\alpha,\beta)$	$f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$ $x \ge 0$ $\alpha, \beta > 0$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	Times between k events for Poisson Process. Lifetimes of ageing items.	Alternative parameterization in terms of $1/\beta$ $Ga(1, \lambda) \equiv Ex(\lambda),$ $Ga(\nu/2, 1/2) \equiv X_{\nu}^{2},$
Beta	$\operatorname{Be}(\alpha,\beta)$	$f(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}$ $x \in [0, 1]$ $\alpha, \beta > 0$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	Useful model for variables with finite range. Also as a Bayesian conjugate prior.	$\begin{aligned} & \operatorname{Be}(1,1) \equiv \operatorname{Un}(0,1) \\ & \operatorname{Be}(\alpha,\beta) \text{ is reflection about} \\ & \frac{1}{2} \text{ of } \operatorname{Be}(\beta,\alpha). \\ & \operatorname{Can transform } \operatorname{Be}(\alpha,\beta) \text{ on } [0,1] \\ & \operatorname{to any finite range } [a,b] \text{ by} \\ & Y = (b-a)X + a \end{aligned}$
Normal	$N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$ $x \in (-\infty, \infty)$	μ	σ^2	Empirically and theoreti- cally (via CLT etc.) a good model in many situations. Often easy to handle math- ematically.	$\begin{array}{l} X \sim \mathrm{N}(\mu, \sigma^2) \Longrightarrow \\ aX + b \sim \mathrm{N}(a\mu + b, a^2 \sigma^2) \\ \Longrightarrow Z = \frac{X - \mu}{\sigma} \sim \mathrm{N}(0, 1) \\ \mathrm{So} \\ P[X \in (u, v)] = P[Z \in \left(\frac{u - \mu}{\sigma}, \frac{v - \mu}{\sigma}\right)] \\ \mathrm{N}(0, 1) \text{ special case has p.d.f.} \\ \mathrm{denoted} \ \phi, \ \mathrm{c.d.f.} \ \Phi \ (\mathrm{tabulated}). \\ \mathrm{Note} \ \Phi(-z) = 1 - \Phi(z). \end{array}$
Chi-square	χ^2_{ν}	$f(x) = 2^{-\nu/2} \Gamma(\alpha)^{-1} x^{\nu/2 - 1} e^{-x/2}$ x > 0 \nu > 0	ν	2ν	Sum of squares of ν stan- dard normals	$\begin{split} X_{\nu}^2 \equiv & \operatorname{Ga}(\nu/2, 1/2) \\ \text{If } X_1, X_2, \dots, X_n \sim & \operatorname{N}(0, 1) \\ & \text{independent, then} \\ & \sum_{i=1}^n X_i^2 \sim \chi_n^2 \end{split}$
Student t	tν	$f(x) = \frac{f(x) = \nu^{-1/2} B\left(\frac{1}{2}, \frac{\nu}{2}\right)^{-1} \left(1 + x^2/\nu\right)^{-(\nu+1)/2}}{x \in (-\infty, \infty)}$ $\nu > 0$	$\begin{array}{c} 0\\ (\text{if } \nu > 1) \end{array}$	$\frac{\nu}{\nu-2}$ (if $\nu > 2$)	Useful alternative to Nor- mal for variables with heavy tails.	If $X \sim N(0, 1)$ and $Y \sim \chi^2_{\nu}$ independent then $\frac{X}{\sqrt{Y/\nu}} \sim t_{\nu}$. $t_1 \equiv Cauchy. t^2_{\nu} \equiv F_{1,\nu}.$
F	$\mathbf{F}_{\nu,\delta}$	$f(x) = \frac{\nu^{\nu/2} \delta^{\delta/2} x^{\nu/2-1}}{B(\nu/2, \delta/2)(\nu x + \delta)^{(\nu+\delta)/2}}$ $x > 0$ $\nu, \delta > 0$	$\frac{\delta}{\delta - 2}$ (if $\delta > 2$)	$\frac{2\delta^2(\nu+\delta-2)}{\nu(\delta-2)^2(\delta-4)}$ (if $\delta > 4$)	Scaled ratio of chi-squares. Used in tests to compare variances	If $X \sim \chi_{\nu}^{2}$ and $Y \sim \chi_{\delta}^{2}$ independent then $\frac{X/\nu}{Y/\delta} \sim F_{\nu,\delta}$. If $T \sim t_{\nu}$ then $T^{2} \sim F_{1,\nu}$. If $Z \sim \text{Be}(\alpha, \beta)$ then $\frac{\beta Z}{\alpha(1-Z)} \sim F_{2\alpha,2\beta}$.