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Guidance for Writing Lab Reports 

WRITTEN BY ADAM BEAGLES, STEPHEN BECK, LIZZY CROSS, ANDREW GARRARD AND 

JEN ROWSON 

1 Writing lab reports 
To write a successful scientific report you need to be clear about what you are trying to 

achieve. The main purpose of a scientific report is to communicate the finding from the work 

and to help the reader to understand them. The report should include a record of the process 

used to establish the findings, so they can be reproduced at a later stage for validation. It 

should be written as an independent record that can be read without further input from the 

author.  

Initially focus on the audience for your report, as this will assist you in getting the level of 

complexity and explanation right. You need to think about who you are writing, how much they 

will already understand and what they want to know? 

A typical technical report should document what has been done, how it was done, what the 

findings were, and the author’s interpretation of those findings. A story should be told through 

a logical delivery of information. A technical engineering report should be presented in logical 

sections. The structure of these sections and style of presentation has evolved to convey 

essential information as concisely and effectively as possible. Each report will vary depending 

on what is being documented. However, there are typical sections that will be relevant to the 

majority of reports you write.  

1.1 The start of the report 

At the start of a technical engineering report, there is a certain amount of preliminary material. 

This may include a title page, contents page (with page numbers), list of tables, list of figures, 

list of equations, acknowledgements, and nomenclature. The type and amount of material 

provided should be based on what is appropriate for the document. For example, it is 

unnecessary to have a contents page for a 3 page document.  

1.2 Abstract 

The first item to appear after the title of the document is the abstract (sometimes called the 

summary or executive summary). It is a very concise summary of all the salient aspects of the 

entire document. An abstract is written so that a reader interested in the work, can gather an 

impression of the contents of the report and decide if investigating the details further is 

worthwhile. 

It should include: 

 the aim of the experiment, 

 the background context, 

 the procedures followed and equipment used, 

 the results that were obtained, 
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 any observations made, 

 the findings drawn and the impact those findings have towards fulfilling the original 

aim. 

Compressing all this information it a very short piece of text makes writing an abstract a 

difficult task to perform and one that is often done badly by undergraduate students. Practice 

writing abstracts is one of the best methods for improving technique. There are some rules 

that should be followed when writing an abstract: 

 the structure of an abstract should follow the structure of the report 

 only the critically important “headlines” from the report should be included 

 it shouldn’t include tables, graphs, pictures or equations 

 it should be self-contained, i.e. can be read and understood without needing to refer 

to other documents 

 it should not include abbreviations, acronyms or jargon 

 it is the first thing to appear after the title of the document, but should be the last part 

of the document to be written 

1.3 Introduction 

The introduction provides the reader with the background to the work documented in the 

report. This section should set the scene for what is to follow. It should contain the aims or 

objectives of the proposed work. If an aim of the experiment is to investigate a hypothesis, 

then this should be stated in the introduction. The aims, objectives and/or hypothesis should 

be given in the context of the real world application outside the experiment. 

There should be a broad introduction to the background of the science, the reasons for doing 

the work, and who will benefit from the results. For example: if the subject of the lab report is 

discussing an experiment conducted on a photovoltaic solar panel, the introduction should 

mention the fundamentals of collecting solar energy from the sun and conversion of solar 

energy to electrical energy by photons operating on photodiodes. It isn't necessary to derive 

equations from first principles or exhaustively describe theory, as reference to alternative 

material can point the reader towards where to find this information. Given that the reader 

may not be familiar with the specifics of the discipline it may be necessary to explain acronyms 

or technical terms. This should be done in the introduction. 

To place the purpose of this example experiment in context, the introduction could include a 

discussion of the benefits of increasing the efficiency of solar cells, or of reducing the 

manufacturing cost of solar panels, compared with reducing the carbon emissions of 

alternative methods of energy production. In addition, there should be a summary of 

previously conducted work in the same field and a description of how the contents of the 

report furthers the advancement of knowledge.  

In summary, the introduction should include: 

 a background to the subject 

 previously conduced work in the same subject 

 aims and objectives for the work that will be presented in the lab report 

 reasons why the work is being conducted 
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1.4 Procedure 

The procedure section is a record of what was done, a chronological description of the steps 

followed and the equipment used. It should not be a list of instructions but should be written 

as prose, in the third person and past tense (as should the rest of the report). Details of what 

variables were recorded, what observations were made, and what types of instrumentation 

were used should be included. 

The procedure should contain sufficient detail to allow the experiment to be repeated by 

another person at a later date. It is necessary to give a detailed record of any important 

conditions of the experiment (e.g. operating temperatures, atmospheric pressure, humidity), 

any specific techniques that were used (e.g. equipment calibration) and any materials involved 

(e.g. 10M hydrochloric acid, cast iron). It is critical to include all relevant information but to 

ensure the report is sufficiently concise and excludes extraneous detail. For example, in 

detailing equipment, it may be useful to record the manufacturer and model number, the 

precision of the instrument, the zero-offset, any calibration that was performed, and the 

accuracy at different recording ranges.  A record of the colour of the equipment will probably 

be of no consequence to the results and should not be included in the report. 

A well written procedure should include not only a description of what was performed, but 

also the reasoning behind the experimental design. Why was the experiment set up in the way 

it was and how does it conform to the scientific method? What special measures have been 

put in place to ensure accuracy and repeatability of the results? 

To describe equipment, labelled diagrams and photographs can be included. Photographs are 

usually not sufficient to replace explanatory diagrams, and should only be used if they enhance 

readers’ understanding of the experiment. Any safety precautions or procedures that were 

observed, or any PPE (personal protective equipment) that was used can be discussed if 

appropriate. 

1.5 Results 

The results section of a lab report contains an impartial description of the results obtained 

from the experiment, typically presented as tables or graphs, and observations that were 

made. At this point in the report, interpretation of the results should not be performed.  To 

convey the main findings of the experiment, processed, rather than raw data, should be shown. 

A brief description of the method used to covert the raw data to the results could be included, 

possibly using an illustrative sample calculation. However, large datasets and numerous 

intermediate calculations should not be shown in the results section. These can be included 

for reference in an appendix if useful for the reader. Large quantities of raw data can be stored 

electronically and an explanation of how to access it given in the report. 

In addition to the measurements taken during the experiment, the results section should 

include any observations that were made during the experiment. Unexpected phenomena may 

affect the results in ways that are not known by the author of the lab report but may be of 

significance to the reader. For example, if work is conducted on a water flow system and a 

large number of bubbles are observed in the supply or there is a large oscillation in the values 

reported from measurement equipment, record this in the results section. 



Page | 4 
 

A well written results section of a lab report highlights the trends observed rather than giving 

details of exact results. The data presented in the results section should demonstrate how the 

experiment’s objectives have been met. For example, if the aim of an experiment was to 

optimize the level of fuel consumption in a petrol car by varying travelling speed, then the 

results section could show a plot of kilometres per litre against meters per second. The details 

of the amount of fuel used, distance travelled by the car, the variation of lengths of journeys, 

the elimination of effects of acceleration and deceleration on the results, and other processing 

techniques should only be described briefly. 

1.6  Discussion 

The purposed of a discussion section is to answer the questions:  

 What do the results mean? 

 Do they answer the questions the experiment was to investigate?  

 What is the relevance to engineering problems?  

 Where are errors introduced?” 

The discussion section is used to analyse and interpret the information presented in the 

results section. Mention should be made of whether or not the results achieve the aims or 

prove/disprove the hypothesis previously set out, within the context of the background 

science. In doing so, the discussion should refer to the introduction section so that the 

document is a coherent piece of work.  

The interpretation of the results should discuss the physical principles for the trends or 

phenomena that were observed. If unexpected results are produced, that were not suggested 

from the background theory presented in the introduction, the discussion allows possible 

reasons for these findings to be proposed. 

The discussion section should attempt to report on the errors and uncertainties in the 

experiment. Errors may include the limited precision of instruments, the result of ignoring 

wind resistance, or human error/reaction time. Where possible these errors should be 

quantified, even approximately, and ranked. Further details on handling and manipulating 

errors are given in this document. There are two reasons to quantify errors and uncertainties: 

firstly, it allows a degree of confidence to be placed on the results presented; secondly, it 

allows efforts to reduce error in future experiments to be focused correctly. 

The potential impact of the results on the real world applications to which the experiment was 

designed to apply should be discussed in this section. For example, by: 

 comparison between field scale and lab scale results 

 proposing design changes to existing products based on new knowledge 

 quantifying the impact of the results on beneficiaries 

1.7  Conclusion 

The conclusion is a short review of that which has been deduced from the work conducted. It 

is an opportunity to restate the aims or key questions and to summarise the key points raised 

in the results and discussion sections. No new information should be given in the conclusion 

that hasn't been stated previously in the document.   
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Proposals for further work or potential improvements identified during the experiment can 

be suggested in the conclusion, or this can be placed in a separate ``further work'' section 

following the conclusion. 

1.8 The end of the report 

Following the conclusion should be additional, non-essential information. Any previously 

published work cited in the body of the document should be referenced in a dedicated 

“references” section. If previously published work has been used but not explicitly cited, this 

should be placed in a “bibliography” section.    

Other information, such as raw data, manufacture’s user manuals, complex numerical tables 

of results…etc. can be placed in an appendix, to which the reader can refer for detail. The 

appendix is not a substitute for the results section and important information must be in the 

body of the report.  

2 Presenting lab reports 
In addition to the content, there are a set of professional standards that should be observed 

when created a technical engineering report. Ensure the documents you produce conform to 

these standards  

2.1 Layout and Typesetting 

There are a number of aspects of a technical document that should ALWAYS be present. 

These are: 

 your name, student ID, institution name (The University of Sheffield) and your 

department name 

 page numbers 

 a title  

 the date the document was written 

 any other pertinent information for the report, such as the collaborators in the 

experiment or personal tutor’s name. 

The decision to include other layout features of the document is, to a certain extent, based 

on common sense. If a document is made up of several pages, a dedicated title page and 

contents page (indicating the page number that starts each section) may be appropriate.  If 

the document contains a large number of tables, figures or equations, a list of these may 

appear at the start of the document. 

Technical documents should have the content divided into logical pieces in order to make 

the information manageable for the reader. Sections can be further broken down into 

subsections and maybe into sub-subsections. The degree to which the document is 

sectioned should be appropriate for the size of the document. All sections and subsections 

should be numbered. This document is an example of how to use section and subsection 

numbers.  

The key to creating a professionally presented document layout is consistency. If a certain 

font is used for sections or subsections, this should be the same throughout the document. If 
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certain standards for how page numbers, line spacing or text justifications are adopted, this 

should not vary.  Finally, and this almost goes without saying, all lab reports should be word 

processed and the spelling and grammar checked. 

2.2 Figures and Tables 

A technical engineering report will, mostly likely, contain pictures, diagrams, graphs and tables, 

in order to help convey information to the reader.  All pictures, diagrams and graphs are 

considered “Figures” and any tabulated data is considered a “Table”, Figures and Tables must 

be numbered sequentially in the order they appear and have titles, e.g.  

Figure 1. A graph showing the relationship between stress and strain for a mild 

steel tensile specimen 

or 

Table 3. Dimensions of the specimens 

If a table or figure is included in a document, it must be referred to in the body text. The reader 

will only know to look at a table or figure if instructed to do so while reading the document. 

Indication to the reader to look at a figure or table should be done using the figure number 

rather than the location on the page. For example, do not write: 

the readings from the oscilloscope are shown in the table below 

Instead write 

the readings from the oscilloscope, as shown in Table 4.2. 

When producing tables, ensure that the column and row headings are distinct from the other 

contents, the precision of the numbers is appropriate, and that units of the numerical values 

are clear.  All graph axes should have labels and appropriate units. Common errors when 

producing graphs, which can occur using the default settings in software, are to  

 produce series of data that are indistinguishable from one another (especially if a 

colour graph is printed in black and white) 

 add an unnecessary legend when there is only one series of data 

 include a title on the plot instead of (or as well as) using the numbered title described 

above  

 have a range on the axis that produces too much whitespace 

 have inappropriate precision for the axis numbering 

 have a graph type that is inappropriate for the data (for example using bar graph for 

continuous, rather than discrete, data) 

2.3 Equations, numbers and nomenclature 

As with figures and tables, all equations should be numbered sequentially and then referred 

to in the body text using those numbers.  Any nomenclature used in an equation needs to be 

defined. For example 
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Newton’s second law of motion dictates that the force experienced by a solid 

body is the product of its mass and acceleration, as shown in equation 4.1, 

𝐹 = 𝑚𝑏 × 𝑎 [4.1] 

where 𝐹 is the force on the body, 𝑚𝑏 is the mass of the body and 𝑎 is the body's 

acceleration. 

In this case, the nomenclature has been defined with the equation. A symbol should be defined 

the first time it appears, but need not be defined with subsequent use. If a document contains 

a large number of equations, with regularly repeated symbols to denote physical parameters, 

it can be more appropriate to define all the symbols used in a nomenclature section at the 

start of the document. 

When numbers are presented in the text of a document they should always be accompanied 

by an appropriate unit and quoted to the correct precision. 

2.4 Language and style 

The report should be grammatically sound, with correct spelling, and generally free of errors.  

The use of jargon, slang or colloquial terms should be avoided. The style of writing should be 

formal and precise, so that the meaning of sentences is clear and unambiguous with no 

unnecessary information. Define acronyms and any abbreviations not used as standard 

measurement units. The use of contractions (such as can’t, isn’t) and personal pronouns 

(subjective: I, you, he, she, we, they; or objective: me, you, him, her, us, them) are not 

appropriate for technical engineering documents.  

Scientific and technical reports should be written in the third person and usually in the past 

tense, unless you are specifically referring to a prediction about the future. For example,  

During the experiment, it was found that buckling occurs at loads greater than 

15 kN 

Or 

It was found that efficiency could be increased by 17% by using the new material 

2.5 Referencing & Plagiarism 

If you copy pictures or information from a published source it must be referenced, otherwise 

you have plagiarised (i.e. stolen!) them. Therefore it is important to properly reference the 

primary source (i.e. the originator of the material, not someone who has referenced them; so 

Wikipedia is almost never a valid source). There are many styles of referencing. The library has 

a useful guide to referencing on their Information Skills Resource pages. 

http://www.librarydevelopment.group.shef.ac.uk/referencing.html 

As with all standards of a technical report, if a referencing style is adopted it should be 

consistent throughout the document.   
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3 Presenting results and data 
Each lab will require different ways of looking at the data you collect; there is not one single 

‘data analysis’ technique to learn, but it is important to know the range of methods available. 

This section summarises some of the approaches you should know and apply. 

3.1 What is data?  

It can be almost anything, but in terms of engineering it is normally numerical, and can be some 

measurement, experimental result, dependency, or event. 

Table 3: Table of numbers used as an example of data 

 

 

It is almost always important to plot the data to reveal any dependencies or anomalies. 

Considering which plots will be of most use requires an understanding of the context in which 

the data arose. 

We then manipulate this data, often using statistical methods, to look at, examine, and predict: 

numbers, populations, distributions, variations, models, and/or errors. It is beneficial to 

understand what kind of data is being gathered: 

Univariate data is data that can be described by a single distribution such as heights, weights, 

speeds, times. This data records how one thing varies independently of anything else, and as 

such can only be described relative to itself, looking at trends and patterns within the data set. 

It is possible with such data to look at probabilities of an event e.g. runners in a marathon 

running sub 2½ hrs. 

Bivariate data is more common in experimental tests where we see how one thing varies with 

another. This could be a simple experiment to observe how stress varies with strain, or load 

with deflection. Or could the result of ordering data against another factor, such as marathon 

times against body mass index (BMI). 

A few definitions to start: 

Mean – the sum of the values divided by the number of samples. 

Median – the number where the value of half the samples have a value greater and half 

less. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 4.82364 4.83259 3.57005 1.43533 4.66193 1.78892 3.01846 4.82364 4.83259 3.57005 1.43533 4.66193 1.78892 3.01846

b 4.27232 6.2184 4.51902 2.91401 6.48955 3.80554 4.40747 3.3546 5.04946 2.51684 0.44293 3.97267 1.11522 2.61395

c 5.24213 8.26946 9.84735 3.42236 7.91179 4.95712 6.15483 7.705 5.60667 7.6175 8.96083 4.78917 9.31167 8.4

d 3.3546 5.04946 2.51684 0.44293 3.97267 1.11522 2.61395 1.85115 3.05947 1.7842 0.993583 2.59132 1.05959 2.24717

e 3.27397 5.25909 4.32896 1.86461 5.1291 2.44637 4.01061 1.54094 4.2876 5.10179 0.466502 6.79288 1.76346 1.4622

f 4.98103 5.66918 4.66601 2.17074 5.56137 3.71159 5.19948 1.66021 2.62715 2.24575 1.48672 2.27262 0.828575 2.73842

g 7.705 5.60667 7.6175 8.96083 4.78917 9.31167 8.4 4.14705 7.19573 6.58351 2.87798 9.15683 3.99217 3.43829

h 2.78659 3.81197 3.34776 1.48663 4.45638 1.88005 2.44895 0.750786 0.778602 1.15623 0.209091 1.1501 0.209091 1.22412

i 2.53497 3.81894 3.73222 1.93026 4.24599 2.20449 2.84811 0.648482 1.33915 1.1468 0.295838 1.3599 0.688084 1.00065

j 1.85115 3.05947 1.7842 0.993583 2.59132 1.05959 2.24717 5.51351 4.18695 6.81261 2.93632 5.37107 3.61462 5.63621

a 3.11308 3.47604 3.61033 2.24816 3.45288 2.27261 2.33611 0.954924 1.31511 0.983211 0.514119 1.52915 0.590022 0.994997

b 4.24693 4.45319 4.1288 2.50872 4.6046 3.79175 2.56685 2.39961 2.17394 3.28255 1.7492 2.67805 2.76814 2.39918

c 4.51085 3.45892 4.7743 2.80733 7.31364 2.75202 6.38688 0.631981 0.639996 1.49568 0.376927 1.97184 0.323182 1.21469

d 1.54094 4.2876 5.10179 0.466502 6.79288 1.76346 1.4622 1.42354 1.97844 2.57294 1.28682 1.91385 0.507047 1.72999

e 4.14705 7.19573 6.58351 2.87798 9.15683 3.99217 3.43829 1.7149 1.54046 1.19442 0.29018 0.938423 0.518362 0.741829

f 4.26474 3.21329 10.5594 3.17532 7.78569 4.03504 4.44756 1.63051 2.00861 2.93171 -0.04549 1.92187 0.906836 0.644239

g 1.66021 2.62715 2.24575 1.48672 2.27262 0.828575 2.73842 4.27232 6.2184 4.51902 2.91401 6.48955 3.80554 4.40747

h 5.51351 4.18695 6.81261 2.93632 5.37107 3.61462 5.63621 3.27397 5.25909 4.32896 1.86461 5.1291 2.44637 4.01061

i 6.24765 5.37011 6.67001 3.89066 6.69345 4.64867 5.83701 2.78659 3.81197 3.34776 1.48663 4.45638 1.88005 2.44895

j 0.750786 0.778602 1.15623 0.209091 1.1501 0.209091 1.22412 3.11308 3.47604 3.61033 2.24816 3.45288 2.27261 2.33611

a 2.39961 2.17394 3.28255 1.7492 2.67805 2.76814 2.39918 3.1281 2.02978 4.68934 1.87748 2.65531 2.86339 2.46954

b 3.18094 3.20954 4.6032 2.14167 2.86171 2.7267 3.07828 3.14869 3.39281 4.20754 2.6699 3.73689 2.99896 3.36578

c 0.648482 1.33915 1.1468 0.295838 1.3599 0.688084 1.00065 2.12117 1.96157 2.25073 1.55528 2.19367 1.91008 1.8955

d 1.6295 2.73253 2.80375 1.72303 2.33997 1.87834 2.30222 2.57551 2.41162 3.00282 1.49006 2.40347 2.47083 3.37308
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Mode – the most common value. 

Quartile – one quarter of the data, the first quartile is the top quartile of the data, the 

last quartile is the bottom quarter of the data. 

Deciles and centiles are the equivalent of quartiles but for tenths and hundredths. 

3.2 Sampling 

Choosing the number of readings to take, or how many repeat tests to be carried out is called 

sampling:. It is vital to get a representative sample to review, therefore, deciding how many 

times to carry out a test or how many incremental measurements to take and in which 

situations is a key part of data gathering. 

The target population is every situation that a researcher is interested in and wishes to draw 

conclusions about. There are different techniques for sampling (i.e. choosing which specific 

situations to study) from this population: 

Random sampling: is where each situation in the sample is chosen entirely by chance 

and each member of the target population has a known, but possibly non-equal, chance 

of being included in the sample. 

Cluster sampling: is where the target population is divided into groups, or clusters, 

and a random sample of these clusters are selected. This is typically used when the 

researcher cannot get a complete list of the members of a population they wish to 

study. 

The number of situations to include will often depend on the cost or time associated with each 

test. The study of how best to design experiments has resulted in guidelines that need to be 

followed when testing medicines, and for many established mechanical tests there are 

guidelines in relevant international standards (often requiring at least 5 repeats of each 

situation of interest). 

Bias and Precision: It is generally impossible to know how data is distributed relative to the 

true value. Precision is a measure of how close an estimator (e.g. the result of an experiment) 

is expected to be to the true value of a parameter; the larger the difference the less precise 

the measurement. Bias is a term which refers to how far the average statistic lies from the 

parameter it is estimating. Errors from chance will be seen in the precision of the value and 

will cancel each other out in the long run, those from bias will not. To illustrate this, you can 

represent the target value as the centre of a bulls eye, as shown in Figure 2, with different 

combinations of bias and precision. 
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Biased, Precise Biased, Imprecise 

  

Unbiased, Precise Unbiased, imprecise 

 

Figure 2: Analogy of a target used to demonstrate the principles of accuracy and precision. 

3.3 Linear regression 

On suitable plots, experimental data can often appear to lie along or close to a straight line. 

This indicates that linear regression through the data points, as shown in Figure 3, may be 

appropriate. There are several steps in creating the linear regression and then assessing its 

appropriateness to the data. The steps below give the equations that underpin the “Insert 

trendline” feature of Microsoft Excel and are also built into MATLAB. 

 

 

Figure 3: Example of the result of linear regression applied to a data set 
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Firstly, the slope is calculated using the least squares method and assuming a straight line 

equation of the form:  𝑦 = 𝑚𝑥 + 𝑐: 

𝑚 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

(𝑥𝑖 − �̅�)2
 

where 𝑥𝑖 is the ith sample and �̅� denotes the mean value of 𝑥, �̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
. This can be rearranged 

as follows for ease of use: 

𝑚 =
𝑛(∑ 𝑥𝑖𝑦𝑖) − (∑ 𝑥𝑖)(∑ 𝑦𝑖)

𝑛(∑ 𝑥𝑖
2) − (∑ 𝑥𝑖)2  

Then the intercept:  

𝑐 = �̅� − 𝑚�̅� 

𝑐 =
(∑ 𝑦𝑖)(∑ 𝑥𝑖

2) − (∑ 𝑥𝑖)(∑ 𝑥𝑖𝑦𝑖)

𝑛(∑ 𝑥𝑖
2) − (∑ 𝑥𝑖)2

 

 

If a data set has columns containing values for x and y, it is possible to form extra columns 

containing calculated x2, y2 and xy, then sum each column to give the terms in these 

equations. See the example in Table 4 and Figure 4. 

Example: 

 

x y x2 y2 xy 

 0.369704 -2.38803 0.136681 5.702687 -0.88286 

 1.588133 0.402435 2.522166 0.161954 0.63912 

 2.829449 4.956806 8.005782 24.56993 14.02503 

 3.594139 7.415136 12.91784 54.98424 26.65103 

 4.592764 10.31141 21.09348 106.3252 47.35787 

 5.526358 12.64368 30.54063 159.8626 69.8735 

 6.709325 16.45262 45.01504 270.6887 110.386 

 7.687919 18.93695 59.1041 358.6081 145.5857 

 8.761176 22.72286 76.7582 516.3284 199.079 

 9.683235 25.73131 93.76504 662.1003 249.1623 

 10.73824 27.8915 115.3098 777.9358 299.5056 

Sums 62.08044 145.0767 465.1688 2937.268 1161.382 

Table 4: Example data used to demonstrate the process of linear regression 

𝑚 =
(11 × 1161.4) − (62.1 × 145.1)

(11 × 465.2) − (62.1)2
= 2.99 

 

𝑐 =
(145.1 × 465.2) − (62.1 × 1161.4)

(11 × 465.2) − (62.1)2
= −3.67 
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Figure 4: Example of linear regression line plotted against original data 

3.4 Goodness of fit 

Goodness of fit is a measure of correlation - how well a relationship represents the data. For 

linear relationships the most common measure is Pearson’s correlation coefficient which is 

denoted by r (or sometimes by R in Excel). This coefficient measures the strength of a linear 

relationship and is always between -1 and +1 

-1 means there is a perfect negative linear correlation (all points lie on a line of negative slope) 

+1 means there is a perfect positive linear correlation (all points lie on a line of positive slope) 

The correlation coefficient always has the same sign as the slope of the regression line. It does 

not change if the independent (x) and dependent (y) variables are interchanged. Neither does 

it change if the scale on either variable is changed (i.e. you may multiply, divide, add or subtract  

from the entire x, y variables without changing the value of r). 

Pearson’s correlation coefficient:  

𝑟 =
𝑛(∑ 𝑥𝑖𝑦𝑖) − (∑ 𝑥𝑖)(∑ 𝑦𝑖)

√(𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)

2
)(𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)
2

)

 

 

For the previous example: 

𝑟 =
(11 × 1161.4) − (62.1 × 145.1)

√(11 × 465.2 − 62.12)(11 × 2937.3 − 145.12)
= 0.99 

 

In order to state the magnitude of r, typically r2 is quoted. 

3.5 Variance 

The mean average of a set of data can be written in the form:  
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�̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

The variance of a set of data is a non-negative number which indicates how widely the values 

of the data are spread. The larger the variance the further that individual values of the data 

tend to be from the mean.  Stating the variance gives an impression of how closely 

concentrated around the expected value the distribution is; it is a measure of the ‘spread’ of a 

distribution about its average value. Variance is symbolised by Var(x) or σ2. 

Taking the positive square root of the variance gives the standard deviation, 𝜎(𝑥),i.e.  

𝑉𝑎𝑟(𝑥) = 𝜎(𝑥)2 

The variance and standard deviation of a set of data are always positive.  Variance is the sum 

of the square of the distance away from the mean that each value is, divided by the number of 

values, see Table 5. 

𝑉𝑎𝑟(𝑥) =  
1

𝑛
∑(�̅� − 𝑥𝑖)2

𝑛

𝑖=1

 

 x (�̅� − 𝒙𝒊) (�̅� − 𝒙𝒊)𝟐 

 2.62 -0.08 0.01 

 2.57 -0.03 0.00 

 1.15 1.39 1.93 

 2.28 0.26 0.07 

 2.90 -0.36 0.13 

 3.72 -1.18 1.39 

Sum 15.24  3.53 

Sum/n 2.54  0.59 

 

Table 5: Example data used to demonstrate variance 

The variance equation can be rearranged to give: 

𝑉𝑎𝑟(𝑥) =  
1

𝑛
∑(�̅� − 𝑥𝑖)2 =

1

𝑛
∑ 𝑥2 −

1

𝑛2
(∑ 𝑥

𝑛

𝑖=1

)

2𝑛

𝑖=1

𝑛

𝑖=1

 

So that variance can be worked out from x and x2 terms.  

Average Variance 
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3.6 Distributions 

If the numbers of occurrences of values in univariate data are plotted (it is necessary to choose 

a set of ranges of values and count the number in each range) it will reveal the distribution 

trend. The most common is called a Normal/Gaussian distribution, shown in Figure 5.  

 

Figure 5: Shape of a normal distribution 

It has the equation: 

𝑦 =
1

√2𝜋𝜎
𝑒

−(𝑥−𝜇)2

2𝜎2  

where μ is the mean and σ the variance 

The area under the curve is 1, with the mean halfway along the distribution, and the standard 

deviations are evenly spread out from the mean, 68% of the data is within one standard 

deviation and 95% within two standard deviations. 

 

Figure 6: A normal distribution showing standard deviations 

If your results can be normalised it is possible to use a standard normal distribution look up 

table to produce values.  This standard score (z-score) allows you to calculate the probability 

of it occurring within the normal distribution.  Table 6 is part of a standard normal distribution 

look up table, which states the probability for each z-score  (the value of z is rounded to 2 

decimal places, the first gives the column and the second, the row in which the probability is 

found). 
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Table 6: Standard Normal Distribution z-score table 

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0 0.5 0.504 0.508 0.512 0.516 0.519 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.6844 6879 

0.5 0.6915 0.695 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7157 0.7549 

0.7 0.758 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.791 0.7939 0.7969 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.834 0.8365 0.8389 

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8513 0.8554 0.8577 0.8529 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9236 0.9215 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9492 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767 

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9842 0.9846 0.985 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989 

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964 

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974 

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999 

3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

 

Using the central limit theorem, the z-score is given by:  

𝑧 =
�̅� − 𝜇

𝜎
 

Example: The average height for UK women is 1.637 m with a standard deviation of 0.065.  

Assuming a normal distribution what percentage of the population is larger than 1.59m? 

Calculate the z-score 
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𝑧 =
1.637−1.59

0.065
= 0.72 to 2 d.p. 

Look up value in table 

z 0 0.01 0.02 0.03 

0 0.5 0.504 0.508 0.512 

0.1 0.5398 0.5438 0.5478 0.5517 

0.2 0.5793 0.5832 0.5871 0.591 

0.3 0.6179 0.6217 0.6255 0.6293 

0.4 0.6554 0.6591 0.6628 0.6664 

0.5 0.6915 0.695 0.6985 0.7019 

0.6 0.7257 0.7291 0.7324 0.7357 

0.7 0.758 0.7611 0.7642 0.7673 

0.8 0.7881 0.791 0.7939 0.7969 

0.9 0.8159 0.8186 0.8212 0.8238 

 

Figure 7: Example of how to use the Standard Normal Distribution z-score table 

Value = 0.7642, therefore 76% of the female UK population is taller than Dr Rowson.  The Excel 

function “NORM.S.DIST(0.72,TRUE)” and the MATLAB command “normcdf(0.72)” also return 

this value. 

Poisson Distribution: is a discrete distribution which takes on the values x = 0, 1, 2, 3, … It is 

often used as a model for the number of events (such as the number of telephone calls at a 

business) in a specific time period. It is determined by one parameter, λ. The distribution 

function for a Poisson distribution is 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
 

Where 𝑥! denotes factorial (e.g. 4! = 4 × 3 × 2 × 1). It can be used to determine the probability 

of a rare event. 

Example: Assuming the probability of carrying a particular genetic mutation is described by a 

Poisson distribution with a mean of 2.3 occurrences per 10,000, as shown in Figure 8.  What is 

the probability of observing a local occurrence rate of 6 per 10,000 (assuming that nothing is 

acting to increase the rate)? 

𝑃(6) =
𝑒−2.32.36

6!
=

0.1003 × 148.04

720
= 2.1% 
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Figure 8: Analogy of a target used to demonstrate the principles of accuracy and precision. 

Note: Even if the main population behaves in a normal way the extremes may not.  

4 Understanding and manipulating error 
This section is to help you understand measurements and their significance. It is always 

important to think about where possible sources of error may occur in your experiment. This 

will allow you to estimate the cumulative error and estimate the reliability of your 

measurements. To introduce the ideas some dictionary definitions are helpful: 

4.1 Errors and Uncertainty 

Error: a measure of the estimated difference between the observed or calculated value of a 

quantity and its true value. 

Uncertainty: the lack of certainty, the estimated amount or percentage by which an observed 

or calculated value may differ from the true value. 

It is unfortunate that ‘error’ has the alternative definition that something is ‘wrong’, and it is 

helpful to remember that ‘errors’ in your measurements refer to uncertainties, and not 

necessarily that your measurements are wrong.  

In order to tell if a measurement is significant there needs to be an awareness of the level of 

error.  

e.g. two measurements of body temperature, before and after a drug is administered were 

measure as 38.2 °C and 38.4 °C 

Is the temperature rise significant? – depends on the associated errors 

 (38.2±0.01) °C and (38.4±0.01) °C  a significant change 

(38.2±0.5) °C and (38.4±0.5) °C  not significant  

Common practice is to assume that a value is quoted to the precision to which it is known so 

that this example would be  

 (38.2±0.05) °C and (38.4±0.05) °C  a significant change 



Page | 18 
 

Random errors (also known as reading errors): an error that varies between successive 

measurements, it is equally likely to be positive or negative. They are always present in an 

experiment and are obvious from the distribution of values obtained.  Random errors can be 

minimised by performing multiple measurements of the same quantity or by measuring one 

quantity as a function of a second then performing a straight line fit of the data. 

Systematic errors: an error that is constant throughout a set of readings, it may result from 

equipment that has not been correctly calibrated or due to how the measurements are 

performed.  These errors cause the average (mean) of measured values to depart from the 

correct value. It is often difficult to spot the presence of systematic errors in an experiment. 

Epistemic errors: errors due to lack of knowledge, e.g. not knowing that the equipment 

wasn’t calibrated. 

Artifacts: a variation in the measured quantities that occurs as a result of the measurement 

procedure. 

Human errors: these are a subset of random errors and are dependent on a personal 

reaction or style; they can be an error due to line-of-sight readings, or reaction time in starting 

a stop watch. 

 

Figure 9: Demonstration of random vs systematic error 

A result is said to be accurate if it is relatively free from systematic error, and said to be precise 

if the random error is small. 

When quoting results and errors it is generally accepted that you state the error to one 

significant figure, although in a small number of cases this may be extended to two significant 

figures. It is important that the result is quoted to the same significance as the error and when 

using scientific notation, quote the value and error with the same exponent. 

 Value 44, error 5   →  44±5 
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 Value 128, error 32  →  130±30 

 Value 4.8x10-3, error 7x10-4 → (4.8±0.7)x10-3 

 Value 1092, error 56  →  1090±60 

 Value 12.345, error 0.35 →  12.3±0.4 

Note that some errors can cancel out.  

The convention is that, unless indicated otherwise, a number can be assumed to be accurate 

to the precision quoted. So that values of 31.1 or 31.10 would be 31.1±0.05 or 31.1±0.005, 

respectively. 

If the error is not quoted explicitly, then always choose the units of the quantities that you 

quote to ensure the reader knows the precision. E.g. 31.10 MPa would be assumed to be 

31.10 ± 0.005 MPa, whereas if this were quoted as 31,100,000 Pa the reader would probably not 

guess the correct error bounds. 

4.2 Examples of estimating reading errors 

Oscilloscope – shown in Figure 10, the reading error is related to the width of the trace (~0.2 

division), scale is 169.2 mV/division. The reading would be stated as (16.9±0.2)mV. 

 

Figure 10: Typical image displayed on oscilloscope with 169.2mV/division 

Analogue meter, as shown in Figure 11 : the error is related to width of pointer e.g. pointer has 

a width of 0.1V so reading would be stated as (0.0±0.1) V 
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Figure 11: Analogue meter for measuring current and voltage. 

Digital meter, as shown in Figure 12: error is taken as ±5 in the next significant figure e.g. 

(32.5480±0.0005) Hz. 

 

Figure 12: Digital meter showing frequency of waveform to nearest 0.0005 Hz 

Linear scale, as shown in Figure 13:  need to estimate the precision with each measurement 

made, it may be a subjective choice (38.42±0.02) cm 
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Figure 13: Linear scale of length, to nearest 0.02 cm 

4.3 Examples of corrections as opposed to errors 

 Corrections may allow for a false instrumental reading. For example, a rotameter 

calibrated for air may be used for another gas if a density correction is made to the 

observed readings. 

 Correction to data to bring an experimental result to standard conditions. For example, 

correction of a measured gas volume at a particular temperature and pressure to the 

standard condition of 0 °C and 1 bar. 

You should try to eliminate as many different sources of error as possible. This way, it will give 

you the most accurate measure of the desired parameters, and a trustworthy value. Of course, 

it is impossible to make any experimentally determined value completely error free. 

4.4 Combining errors 

The degree of error in two (or more) variables will combine to create an overall error. The 

way they combine depends upon how the variables are related. 

In general we will calculate a result using a formula which has as an input one or more 

measured values. For example: volume of a cylinder𝐴 = 𝜋𝑟2ℎ. How errors in the measured 

values feed through to the final results is an important part of understanding the significance 

of your result. 

If 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝑍 are absolute values, and ∆𝐴, ∆𝐵, ∆𝐶 𝑎𝑛𝑑 ∆𝑍 are their respective absolute errors 

then ∆𝐴/𝐴 is the fractional error in 𝐴, and 100 ∙ (
∆𝐴

𝐴
) % is the percentage error. A method of 

treating errors in formulae is give in Figure 14. This assumes that the errors represent spreads 

of the distributions of values and gives expected spreads of the distributions of the results. 

Often this is smaller than the range that would be predicted by directly using the limits of the 

values (see examples below). 
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Figure 14: Treatment of errors in formulae 

Example 1: 

𝐴 = 𝜋𝑟2     𝑤ℎ𝑒𝑟𝑒 𝑟 = (5 ± 0.5)𝑚 

𝐴 = 78.5398 𝑚2 (raw theoretical value) 

∆𝑟

𝑟
=

0.5

5
= 0.1 

(
∆𝐴

𝐴
)

2

= (2
∆𝑟

𝑟
)

2

= (2 × 0.1)2 = 0.04 

⇒
∆𝐴

𝐴
= 0.2    ℎ𝑒𝑛𝑐𝑒    ∆𝐴 = 0.2𝐴    ∆𝐴 = 0.2(78.5398 𝑚2) = 16 𝑚2 

Hence the final result is 𝐴 = (79 ± 16) 𝑚2 

 

Example 2: 

𝑃 = 2𝐿 + 2𝑊     𝑤ℎ𝑒𝑟𝑒 𝐿 = (4 ± 0.2)𝑚 𝑎𝑛𝑑 𝑊 = (5 ± 0.2)𝑚 

𝑃 = 18 𝑚 

(∆𝑃)2 = (0.2)2 + (0.2)2 = 0.08 

⇒ ∆𝑃 = 0.28 𝑚 

Hence the final result is 𝑃 = (18 ± 0.3)𝑚, but note that using the extreme values for L and W 

would give  𝑃 = (18 ± 0.8) 𝑚  

Example 3: 

𝜏 = 2𝜋√
𝑙

𝑔
         𝑤ℎ𝑒𝑟𝑒 𝑙 = (2.5 ± 0.1)𝑚 𝑎𝑛𝑑 𝑔 = (9.8 ± 0.2)𝑚/𝑠2 

𝜏 = 3.1735 𝑠 
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(
∆𝜏

𝜏
)

2

= (
1

2

∆𝑙

𝑙
)

2

+ (−
1

2

∆𝑔

𝑔
)

2

= (
1

2
×

0.1

2.5
)

2

+ (−
1

2
×

0.2

9.8
)

2

= 5.04 × 10−4 

∆𝜏

𝜏
= 0.022   ℎ𝑒𝑛𝑐𝑒 ∆𝜏 = 0.022 × 3.1735 = 0.070 

Hence the final result is 𝜏 = (3.17 ± 0.07 )𝑠, whereas using 2.4 with 10 and 2.6 with 9.6 gives 

𝜏 = (3.17 ± 0.10) 𝑠 

To combine random and systematic errors (if known) add the squares of the separate errors. 

An example of which is: A length is measured with a reading (random error) given by (89 ±

2)𝑐𝑚 using a rule of calibration accuracy 2 %. 

(
𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 

𝑒𝑟𝑟𝑜𝑟
)

2

= (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟)2 + (𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟)2 

(
𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 

𝑒𝑟𝑟𝑜𝑟
)

2

=  (
2

89
)

2

+ (0.02)2 = 0.000905 

𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 = 0.03 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 0.03 × 89 = 2.7 𝑐𝑚 

𝑉𝑎𝑙𝑢𝑒 = (89 ± 3) 𝑐𝑚 

 

4.5 The statistical nature of errors  

When stating the total error associated with a value, this is not the maximum possible range 

of values. Instead the total error provides information concerning the probability that the value 

falls within certain limits. 

If measurements of a quantity σ have a normal distribution with a standard deviation of Δσ 

then there is a 67% chance that the true value lies within the range (σ-Δσ) to (σ+Δσ).  There 

is a 95% chance that the true value lies within the range (σ-2Δσ) to (σ+2Δσ), see Figure 15. It 

is often more reasonable to assume that the observed error is related to the standard 

deviation of a normal distribution than that it provides an absolute limit to all possible 

measurements. 

 

Figure 15: Distribution of possible results for a value with an associated error 
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When comparing values, it is therefore important to look at the overlap of the distributions. 

For example, consider two quantities σA and σB normally distributed with standard deviations 

ΔσA and ΔσB. that differ by ΔσA + ΔσB: 

 

Figure 16: Overlap of potential errors in two different readings 

The probability of agreement    ~2 ×
1

36
= 6 % 

4.6 Reducing errors 

One way to reduce error and increase confidence in the measurements made is to repeat 

tests many times and calculate an average value. Repeating experiments many times will give 

you a scatter of values, which will lie within a boundary of the true value given by the single 

sample error. 

For instance, consider a data set that can be expected to be described by a=Pb , where a and 

b are variables and P is a proportionality constant. Each of the values of a and b could be used 

to arrive at a value of P, with a similar degree of error, ei. However, if the data set was plotted 

and a line of best fit applied, the gradient of the line could be used to obtain P. This now uses 

all of the data points and so is effectively a form of averaging. The total standard error, eN, now 

becomes: 

N

e
e i

N   

where N is the number of data points. So, the overall error in the value of P is reduced by 

N compared to the single data point case. 

This is similar to if data were measured at the same point repeatedly, i.e. for fixed a measure 

b many (N) times. However, it is often more convenient to obtain a series of changing data 

values in an experiment.  
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5 An example lab report 
 

Determination of the Spring Constant and Natural Frequency of Bungee Cord for Varying 

Applied Load 

Ben G. Cord 

12th September 2010 

Summary 

An experiment was carried out to measure the spring constant of a piece of bungee cord for a 

range of applied loads. The results were used to calculate the variation in natural frequency. The 

natural frequency for a particular load was measured experimentally and compared with the 

predicted natural frequency, calculated from the spring constant. The two values were found to 

be in good agreement. 

Nomenclature 

 k Spring constant  N m-1 

 m Mass N 

 x Displacement m 

 g Gravitational constant 9.81 m s-2 

 n Natural resonant frequency (Hz) s-1 

Introduction 

Bungee cord has a variety of uses, including strapping down loads during transit and in the 

recreational activities of ‘Bungee jumping’ and sailing. The elastic behaviour of bungee cord is 

quite complex, as it exhibits creep and visco-elastic properties. 

The aim of this experiment was to determine how the elastic behaviour of a piece of bungee cord 

varied with applied load. 

The objectives of the experiment were: 

1. To apply increasing load to a piece of bungee cord and measure the deflection. 
2. To examine the relationship between spring constant and applied load. 
3. To calculate the natural frequency from spring constant values, at various loads. 
4. To compare an experimental value of natural frequency with a predicted value. 

 

Theory 
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Hooke’s law [1] for an ideal spring states that the spring constant (or stiffness) k (Nm-1) is the 

gradient of the force-displacement graph (where m is the applied mass). 

k =
Force (Newtons)

Extension (metres)
=
mg

x
   (1) 

For a non-linear spring, the constant k at any point is the differential of this. 

   
dx

dm
gk      (2) 

In terms of experimental points, 
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For a system that exhibits simple harmonic motion, the natural frequency, ωn (in Hz), is given by 

[2] and was originally described by Rayleigh, [3],: 

m

k
n 













2

1     (4) 

Procedure 

The apparatus was set up as shown in Figure 1. A piece of bungee cord was hung from a loading 

frame and a 50 g mass carrier was attached to the bottom end of the cord. A measuring scale was 

then attached to the loading frame, and adjusted so that the bottom edge of the mass was aligned 

with a zero reading on the scale. 

Masses were then added to the carrier in increments of 50 g and 100 g until a total of 1100 g was 

attached to the cord. As each mass was applied, the position of the bottom edge of the mass 

carrier was measured on the scale and recorded. 

The mass was then reduced to 250 g and the cord stretched slightly downwards and released. 

This allowed the cord and mass to behave as a spring-mass system, exhibiting simple harmonic 

motion. The time taken for four oscillations to occur was measured using a stop watch and 

recorded. 
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Figure 1. Apparatus for applying load to bungee cord and measuring deflection. 

Results 

Figure 2 shows the deflection of the bungee cord relative to the applied load. 

 

Figure 2. Deflection of bungee cord vs. applied load. 

 

In Table 1, one can see the data collected; as each mass was applied the deflection was measured 

and recorded.  The load and deflection were then used to calculate the spring constant and natural 

frequency, see following for sample calculations.  
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Table 1. Data from experiment and calculated values of spring constant and natural frequency. 

 

  

Applied 

Mass 

Measured 

Deflection 

Applied 

Mass 

Applied 

Load 

Measured 

Deflection 

Spring 

Constant, k 

Natural 

Frequency, ωn 

g mm kg N m N/m Hz 

50 0 0.05 0.49 0 nda nda 

100 10 0.10 0.98 0.010 49.1 3.52 

150 32 0.15 1.47 0.032 22.3 1.94 

200 75 0.20 1.96 0.075 11.4 1.20 

250 129 0.25 2.45 0.129 9.08 0.96 

300 189 0.30 2.94 0.189 8.18 0.83 

350 250 0.35 3.43 0.250 8.04 0.76 

400 316 0.40 3.92 0.316 7.43 0.69 

450 372 0.45 4.41 0.372 8.76 0.70 

500 429 0.50 4.91 0.429 8.61 0.66 

600 535 0.60 5.89 0.535 9.25 0.63 

700 595 0.70 6.87 0.595 16.3 0.77 

800 640 0.80 7.85 0.640 21.8 0.83 

900 690 0.90 8.83 0.690 19.6 0.74 

1000 715 1.00 9.81 0.715 39.2 1.00 

1100 740 1.10 10.79 0.740 39.2 0.95 
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Sample calculations at applied mass of 250g 

Calculating spring constant, k, from Equation 3, 

N/m 9.08
075.0129.0

20.025.0
81.9
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Calculating natural frequency, ωn,from Equation 4, 

Hz 0.96
25.0

08.9

2

1

2
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Figure 3 shows the calculated spring constant with repect to the load applied. 

 

 

Figure 3. Spring constant of bungee cord vs. applied load. 

 

The time taken for four oscillations of the system, with an applied mass of 250 g was 4.11s. 

Therefore, the measured natural frequency was 4/4.11 = 0.97 Hz 

Discussion 

Figure 2 shows the relationship between the deflection of the bungee cord and the applied load. 

This is initially non-linear, but for loads in the range of 2 to 6 N, the relationship can be seen to 

be linear. Above 6N, the gradient of the curve in Figure 2 begins to decrease, indicating that the 

spring constant increases. 

The spring constant (or stiffness) for each applied load was calculated by dividing the increase of 

each applied load, by the corresponding increase in deflection (see sample calculation in Results 

section). This data is shown in Table 1. Figure 3 shows the relationship between the spring 

constant of the bungee cord and the applied load. At low loads (0 to 2 N) a relatively high spring 
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constant was measured, indicating that the spring-mass system was initially stiff and became less 

stiff as increased load was applied. At loads ranging from 2 to 6 N, the spring constant was found 

to be fairly constant, at approximately 9 N/m. As the applied load was increased above 6 N, the 

system became increasingly stiff again and the spring constant increased. 

If the load had been increased further still, is thought that the stiffness of the system would 

gradually level off to a constant value, until the point at which the cord snapped. 

The natural frequency of the bungee cord for each applied load was calculated from the spring 

constant values using Equation 4 (see sample calculation in Results section). This data can be seen 

in Table 1. The predicted value of natural frequency for an applied mass of 250 g (applied load of 

2.45 N) was 0.96 Hz. The natural frequency measured by experiment was 0.97 Hz, showing 

excellent agreement (approximately 1% different). 

There were a number of sources of error in this experiment. The deflection of the cord could only 

be measured to ± 1 mm and the scale could only be originally placed to the same degree of 

accuracy. This led to an inaccuracy of up to 20% for the smaller deflection measurements (around 

10 mm). For larger deflections (up to 740 mm), this inaccuracy reduced to 0.3%. Further error 

could have been introduced by deflection of the loading frame and slippage of the attachments 

at each end of the cord. 

Another error arose from the assumption shown in Equation 3, that the gradient of the force-

deflection graph can be approximated using the finite difference between consecutive data 

points. This error may be reduced by using more data points and a more accurate method of 

gradient approximation.  

The main error in the measurement of the natural frequency was caused by the human reaction 

time of operating the stop watch and assessing the point at which four oscillations had occurred. 

These sources of error may be reduced by using a longer piece of cord, which would oscillate 

more slowly and by averaging over a large number of measurements. 

Errors 

For the spring stiffness, the main error arises from the measurement of the displacement.  It is 

possible to read the scale to an accuracy of 1 mm. For a mean reading of 300 mm, this gives an 

error of 

%3.0300/1   

 

which is negligible. When calculating the resonant frequency, as 

𝜔𝑛 = (
1

2𝜋
) √

𝑘

𝑚
 

 

the error is going to be the square root of this.  



Page | 31 
 

1 − √1.003 = 0.15% 

 

When working with small numbers like this, it is possible to multiply the error by the exponent 

(this come out of the Taylor's expansion). 

For the resonant frequency, however, the error is made up of two components. Firstly the time, 

the error on a stopwatch can be estimated at about a quarter of a second. For a time 0f 4.11 

seconds, this gives an error of 

0.25
4.11⁄ = 6% 

It is also possible to judge the bottom of the final swing to within about 1/10th of a swing as it is 

small by this time. For four swings, this gives an additional error of  

0.1
4⁄ = 2.5% 

So the total error for the resonant frequency is 

1 − (1.06 ∗ 1.025) = 1.087 = 8.7% 

Which is 0.084 Hz. Once again, for small errors, you can get away with adding the percentages. 

Conclusions 

The elastic behaviour of bungee cord was found to be non-linear for varying applied loads apart 

from in the range of 2 to 6 N. 

At applied loads ranging from 2 to 6 N, the spring constant was found to remain constant at 

approximately 908 0.027 N/m. At loads above and below this range, the spring constant was 

higher, and the spring-mass system was therefore stiffer. 

For an applied mass of 250 g, the measured natural frequency (0.97 0.084 Hz) was found to be 

in good agreement (and within the predicted errors) when compared with the natural frequency 

predicted using the equation for a spring-mass system with the calculated spring constant (0.96 

Hz). 
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