

Maths and Statistics Help Centre

Introduction

Decision tree analysis helps identify characteristics of groups, looks at relationships between independent variables regarding the dependent variable and displays this information in a non-technical way. The process can also be used to identify classification rules for future events e.g. identifying people who are likely to belong to a particular group.

Basic model

The following example uses records from the Titanic on passengers. The tree will look at what factors affected chances of survival.

Dependent variable: Binary indicator of survival (1 = survived) Independent variables: Gender Class (1st, 2nd, 3rd) Child under 13 (Under 13, adult) Travelling alone/ travelling with others.

Growing method: The most commonly used growing methods are CHAID (Chi-squared automatic interaction detection) and CRT (Classification and regression).

Summary of differences:

- Treatment of missing values. CRT uses surrogates (classification via other independent variables with a high association with the independent variable with a missing value) whereas CHAID treats all missing values within an independent variable as one category.
- CHAID uses Pearson's Chi-squared to decide on variable splits and CRT uses Gini
- CRT only produces binary splits. If all independent variables are binary, the resulting tree from CRT and using the Pearson's Chi-squared option within CHAID will produce the same tree.
- CRT has a pruning ability so that extra nodes which do not increase the risk (wrong classification) by much can be automatically removed to leave a simpler tree.

Maths and Statistics Help Centre

Basic output using CHAID

Terminal node	Path	Classification	Number correct	Number wrong
4	Male →under 13	Survived	27	23
5	Female → 1 st Class	Survived	139	5
6	Female \rightarrow 2 nd Class	Survived	94	12
7	Female \rightarrow 3 rd Class	Died	110	106
8	Male →Adult →1 st Class	Died	118	57
9	Male \rightarrow Adult $\rightarrow 2^{nd}$ or 3^{rd} Class	Died	541	77

The risk represents the proportion of cases misclassified by the proposed classification. The classification table summarises the percentages classified correctly. The model classified 95.1% of those dying correctly, but only 52% of those who survived.

Maths and Statistics Help Centre

Risk Estimate Std. Error .214 .011

Growing Method: CHAID Dependent Variable: Survived?

Classification						
	Predicted					
Observed	Died	Survived	Percent Correct			
Died	769	40	95.1%			
Survived	240	260	52.0%			
Overall Percentage	77.1%	22.9%	78.6%			

Growing Method: CHAID

Dependent Variable: Survived?

/* Node 1 */. IF (((Gender = "male") OR (Gender != "female") AND (Number of accompanying siblings or spouses != "1")))THEN Node = 1Prediction = 0Probability = 0.809015/* Node 5 */. IF (((Gender = "female") OR (Gender != "male") AND (Number of accompanying siblings or spouses = "1"))) AND (((Class = "1st" OR Class = "2nd") OR (Class != "3rd") AND ((Age NOT MISSING AND (Age > 23.5)) OR Age IS MISSING AND (Number of accompanying siblings or spouses != "3 or more")))) AND (((Class = "1st") OR (Class != "2nd") AND (Age IS MISSING OR (Age > 34.5)))) THEN Node = 5Prediction = 1Probability = 0.965278/* Node 6 */. IF (((Gender = "female") OR (Gender != "male") AND (Number of accompanying siblings or spouses = "1"))) AND (((Class = "1st" OR Class = "2nd") OR (Class != "3rd") AND ((Age NOT MISSING AND (Age > 23.5)) OR Age IS MISSING AND (Number of accompanying siblings or spouses != "3 or more")))) AND (((Class = "2nd") OR (Class != "1st") AND AND (Age <= 34.5)))) (Age NOT MISSING THEN Node = 6Prediction = 1Probability = 0.886792/* Node 4 */. IF (((Gender = "female") OR (Gender != "male") AND (Number of accompanying siblings or spouses = "1"))) AND (((Class = "3rd") OR (Class != "1st" AND Class != "2nd") AND ((Age NOT MISSING AND (Age <= 23.5)) OR Age IS MISSING AND (Number of accompanying siblings or spouses = "3 or more")))) THEN Node = 4Prediction = 0Probability = 0.509259

Maths and Statistics Help Centre

