
 

 

Multinomial Logistic Regression 

1) Introduction 

Multinomial logistic regression (often just called 'multinomial regression') is used to predict 

a nominal dependent variable given one or more independent variables. It is sometimes 

considered an extension of binomial logistic regression to allow for a dependent variable 

with more than two categories. As with other types of regression, multinomial logistic 

regression can have nominal and/or continuous independent variables and can have 

interactions between independent variables to predict the dependent variable. 

2) Presentation of the Data and Research Question 

The data were collected on 200 high school students and are scores on various tests, 

including a video game and a puzzle. The outcome measure in this analysis is the student’s 

favourite flavor of ice cream - vanilla, chocolate or strawberry - from which we are going to 

see what relationships exists with video game scores (video), puzzle scores (puzzle) and 

gender (female).  

3) Assumptions 

o Assumption 1: Your dependent variable should be measured at the nominal level 

with more than or equal to three values. Examples of nominal variables include 

ethnicity (e.g., with three categories: Caucasian, African American and Hispanic), 

political party (e.g. Lib Dems, Labour, Conservatives). 

o Assumption 2: You have one or more independent variables that are continuous, 

ordinal or nominal (including dichotomous variables). However, ordinal 

independent variables must be treated as being either continuous or categorical.  

o Assumption 3: You should have independence of observations and the dependent 

variable should have mutually exclusive and exhaustive categories (i.e. no 

individual belonging to two different categories!). 

o Assumption 4: There should be no multicollinearity. Multicollinearity occurs when 

you have two or more independent variables that are highly correlated with each other.  
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o Assumption 5: There needs to be a linear relationship between any continuous 

independent variables and the logit transformation of the dependent variable.  

o Assumption 6: There should be no outliers, high leverage values or highly 

influential points for the scale/continuous variables. 

 

4) Procedure on SPSS 

We first select Analyze -> Regression -> Multinomial Logistic… 

 

Figure 1. Selecting Multinomial Logistic Regression 

We then enter the variable "ice_cream" as our dependent variable, that is, a categorical 

variable taking three values: "vanilla", "chocolate" and "strawberries" (see Figure 2). 

Transfer the categorical variable "gender" in the Factor box and then we transfer the 

continuous variables, i.e. the "score on video game" and the "score on puzzle", in the 

Covariate(s) box. 



 

 

Figure 2. Setting the regression model. 

In this regression model we need to specify the reference category of our dependent 

variable (see Figure 3). For this, click on "Reference Category…" and then select which 

category of "ice_cream" should be taken as the reference. If you do not specify it, the 

procedure will automatically choose the last category by default (i.e. "ice_cream = 

strawberries") as the reference category. In our case, we took "ice_cream = vanilla" as our 

reference category because we generally want the reference category to be the category 

with the highest number of people in it (see Figure 4). 

 

 

 

"vanilla" is the first value of ice_cream, therefore we will 

select "First Category". We want to treat each category in 

the ascending order, i.e. chocolate and then strawberry, 

so we will choose "Ascending" in the Category Order. 

Figure 3. Choosing the reference category in the dependent variable. 



 

favorite flavor of ice cream 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid vanilla 95 47.5 47.5 47.5 

chocolate 47 23.5 23.5 71.0 

strawberry 58 29.0 29.0 100.0 

Total 200 100.0 100.0  

Figure 4. Distribution of the variable ice_cream. 

 

We will be presented with the Multinomial Logistic Regression: Statistics dialogue box 

(Figure 5), as shown below. Tick all the options below: 

 

Figure 5. Statistics Dialog box. 

 



5) Results 

A first way to assess the goodness of fit is to consider whether the variables we added 
statistically significantly improve the model compared to the intercept alone (i.e., with no 
variables added). We can see from the "Sig." column that p = 0.000 (meaning in fact that p < 
0.001), which means that the full model statistically significantly predicts the dependent 
variable better than the intercept-only model. 
 

Model Fitting Information 

Model 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept Only 365.736    

Final 332.641 33.095 6 .000 

 

The Goodness-of-Fit table provides two measures that can be used to assess how well the 

model fits the data, as shown below. The first row, labelled "Pearson", presents the Pearson 

chi-square statistic.  A statistically significant result (i.e., p < 0.05) indicates that the model 

does not fit the data well. You can see from the table above that the p-value is 0.240 (from 

the "Sig." column) and is, therefore, not statistically significant. Based on this measure, the 

model fits the data well. The second statistic is the "Deviance" and in the same way, we 

consider that that model fits the data well if the test shows no significance (i.e. p-value > 

0.05).  
 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 294.296 278 .240 

Deviance 287.613 278 .333 

 

The table below (Likelihood Ratio Tests) shows which of your independent variables are 

statistically significant. You can see that video (the "video" row) was not statistically 

significant because p = 0.174 (the "Sig." column). On the other hand, the puzzle and female 

variable (the "puzzle"  and the “female” row) was statistically significant because p = 0.002 

for “puzzle” and p = 0.078 for “female”. There is not usually any interest in the model 

intercept (i.e. the "Intercept" row).  

 

 



 

 

Likelihood Ratio Tests 

Effect 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood of 

Reduced Model Chi-Square df Sig. 

Intercept 332.641
a
 .000 0 . 

video 336.139 3.498 2 .174 

puzzle 345.602 12.962 2 .002 

female 337.730 5.090 2 .078 

 

The Likelihood Ratio Tests table is mostly useful for nominal independent variables because 

it is the only table that considers the overall effect of a nominal variable, unlike the 

Parameter Estimates table, as shown below. This table presents the parameter estimates 

(also known as the coefficients of the model). As there were three categories of the 

dependent variable, you can see that there are two sets of logistic regression coefficients 

(sometimes called two logits). The first set of coefficients is found in the "chocolate" row 

(representing the comparison of the Chocolate category to the reference category, Vanilla). 

The second set of coefficients is found in the "strawberry" row (this time representing the 

comparison of the strawberry category of favourite ice cream to the reference category, 

vanilla). 

 

Parameter Estimates 

favorite flavor of ice cream
a
 B Std. Error Wald df Sig. Exp(B) 

95% Confidence Interval for 

Exp(B) 

Lower Bound Upper Bound 

chocolate Intercept 2.729 1.139 5.740 1 .017    

video -.024 .021 1.262 1 .261 .977 .937 1.018 

puzzle -.039 .020 3.978 1 .046 .962 .926 .999 

[female=.00] -.817 .391 4.362 1 .037 .442 .205 .951 

[female=1.00] 0
b
 . . 0 . . . . 

strawberry Intercept -4.090 1.209 11.448 1 .001    

video .023 .021 1.206 1 .272 1.023 .982 1.066 

puzzle .043 .020 4.675 1 .031 1.044 1.004 1.085 

[female=.00] .033 .350 .009 1 .925 1.033 .520 2.052 

[female=1.00] 0
b
 . . 0 . . . . 

a. The reference category is: vanilla. 

b. This parameter is set to zero because it is redundant. 



 

As you can see, each dummy variable has a coefficient for the female variable. However, 

there is a statistical significance value for chocolate but not strawberry for the female 

variable. This would suggest that there is a statistical association between gender and 

preferring chocolate rather than vanilla, but that there is no association between gender 

and preferring strawberries rather than vanilla. 

You can see that "video" for both sets of coefficients is not statistically significant (p = 0.261 

and p = 0.272, respectively; the "Sig." column). On the other hand the "puzzle" for both sets 

of coefficients is statistically significant (p = 0.046 and p = 0.031, respectively; the "Sig." 

column). This was presented in the previous table (i.e., the Likelihood Ratio Tests table). 

By looking at the value of the coefficients B, if a subject were to increase his puzzle score by 

one point, the multinomial log-odds of preferring chocolate to vanilla would be expected to 

decrease by 0.039 unit while holding all other variables in the model constant. On the other 

hand if a subject were to increase his puzzle score by one point, the multinomial log-odds 

for preferring strawberry to vanilla would be expected to increase by 0.043 unit while 

holding all other variables in the model constant. 

 


