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Randomisation in Clinical
Investigations
Steven A. Julious and Jenny V. Freeman

tutorial

In previous tutorials, we have outlined methods for
describing and summarising data, and the principles of
hypothesis testing and estimation.1,2 In this tutorial, we will
describe the basic concepts of randomisation in
investigations. We will begin by describing the background,
continue by describing the rationale for randomisation, and
then finally move on to some of the more advanced topics
of randomisation pertinent to imaging investigations.

Allocation at random has been a central tenet of clinical trial
design since the first reported modern clinical trial was
conducted to investigate the effect of streptomycin and bed
rest compared to bed rest alone in the treatment of
tuberculosis.3–6 Randomisation is important, as it ensures
that the regimen groups being investigated are objectively
the same with regard to any demographic or prognostic
factors. Randomisation achieves this by ensuring that each
subject has a known chance of receiving a given treatment
in an allocation that cannot be predicted.7 This lack of
predictability is important, as an investigator should remain
masked to the order of the treatments in order to reduce the
potential for bias; they only find out what regimen a patient
is to be assigned to after recruiting a patient into the trial.8

Note that the concept of randomisation originally came
from clinical trials; hence the reference to treatments. As we
will describe in this note, however, randomisation is an
important consideration for all types of clinical investigation.
The problem of not allocating at random is evidenced by
the following example.9 A historical trial was undertaken to
compare the success of a new treatment (percutaneous
nephrolithomy) with that of an existing treatment (open
surgery) in the removal of kidney stones. From table 1a, it
appears that the new treatment is superior, with an 83%
success rate compared to only 78% on the old treatment.
However, when we break the table down into small (table
1b) and large (table 1c) stones, the direction of the effect
first observed is reversed. The old treatment is superior for

both sizes of stone. The only reason why the old treatment
seemed inferior to start with was that treatment is
confounded with stone. This reversal effect is known as
Simpson’s Paradox.9,10

Background

Introduction

(a) Overall

Treatment
Success

Total
Yes No

New 289 (83%) 61 (17%) 350

Old 273 (78%) 77 (22%) 350

Total 562 138 700

(b) Stones < 2 cm

Treatment
Success

Total
Yes No

New 234 (83%) 36 (17%) 270

Old 81 (93%) 6 (7%) 87

Total 315 42 357

(c) Stones >2 cm 

Treatment
Success

Total
Yes No

New 55 (69%) 25 (31%) 80

Old 192 (73%) 71 (27%) 263

Total 247 96 343

Table 1. A comparison of the success rates of percutaneous
nephrolithotomy (New) compared to open surgery (Old) in the removal of
kidney stones (a) overall, (b) for stones < 2 cm and (c) for stones ! 2 cm
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Confounding is a statistical term for when there is a strong
relationship between a third factor and both the outcome
and comparison of interest. In table 1, people who had
percutaneous nephrolithomy were also more likely to have
small stones, and the smaller the stone, the better the
prognosis. Hence, we would say that treatment is
confounded with stone size.

Obviously, a bias of the magnitude observed with instances
of Simpson’s Paradox is rare, but randomisation protects
the investigator from confounding with known and unknown
prognostic factors. Therefore, wherever possible, subjects
should be assigned to investigations at random. If there are
known factors that could affect the outcome, such as
centre, age, sex or baseline risk, then the study should be
stratified to allow for these, and a block size (see later)
should be set that provides balance within each stratum
(see later). If there is to be a constraint in the
randomisation, such as unequal allocation, then this should
be allowed for in the block size and appropriate adjustment
made to the sample size. Block size and strata are
described now.

Parallel group trials

A parallel group trial is one in which there are to be at least
two arms to be investigated and subjects are to be
randomised to each of these arms. It is beyond the scope
of this note to describe in detail how to undertake a
randomisation; however, we will give some general hints
and tips (used in this context, arm is a generic term to
describe the groupings in trials; subjects may be assigned
to two different arms, where these arms could be
treatments; assessors or imaging protocols).

When randomising subjects to the different arms in the trial,
an important consideration is to maintain balance for the
interventions to which subjects are being randomised. This
is particularly important in small studies, where by chance
there can easily be an imbalance between the numbers of
subjects on the respective arms. One way to ensure that
groups are balanced is to introduce ‘blocks’ into the
randomisation. Basically, a block is a sample size after
which there is balance in the randomisation. It is best to
illustrate this through a simple worked example.

Consider the case of two groups. We wish to randomly
allocate individuals to either group A or group B. In this
example, we could toss a coin and record either heads (H)
or tails (T), so that we can then use the order to allocate
individuals to groups (i.e. if heads, then group A; if tails,
then group B). If we set the block size to be four, we need
to ensure that after every four tosses there are two heads
and two tails. Thus:

Block 1: T T (H H)

Block 2: T T (H H)

Block 3: T H T (H)

Block 4: T H H (T)

The terms in parentheses are not from tosses but entries
that we were forced to enter to ensure balance. For
example, in block 1 the first two tosses were tails. We thus
made the next two heads, so that after ‘four tosses’ we had
a balance. Note that after ‘16 tosses’ by blocking, we have
eight heads and eight tails.

Another important consideration is stratification.
Stratification is similar to blocking, but as well as ensuring
balance after a requisite block size we also ensure balance
by strata. These strata are usually clinically important
subgroups such as sex and age.

Again, it is best to illustrate this by example. Suppose that
we are doing the same coin tossing to create a
randomisation list. For this randomisation, we wish to
ensure balance for a two-level stratification factor.
Operationally, this would be the same as doing the coin-
tossing exercise twice: once for each stratum.

Stratum 1:

Block 1: T T (H H)

Block 2: T T (H H)

Stratum 2:

Block 1: T H T (H)

Block 2: T H H (T)

Now, after ‘16 tosses’ we have balance both in terms of
heads and tails and in terms of heads and tails by strata.

A final consideration, as discussed earlier in this note, is the
withholding of the randomisation until the actual allocation
of subjects. Even for completely open studies, it is
preferable to mask the randomisation so that investigators
only find out what regimen a patient is to be assigned to
after the patient has been recruited. In practice, this could
be done by putting the randomisation in envelopes that are
opened only after a subject has been enrolled.

Crossover trials

The distinction between parallel group designs and
crossover designs is that in parallel group designs subjects
are assigned at random to receive only one investigation,
and as a result of the randomisation the groups are the
same in all respects other than the investigation being
made. However, with a crossover trial, all subjects receive
all the investigations but it is the order in which subjects
receive the investigations that is randomised. The big
assumptions here are that prior to starting each
investigation all subjects return to baseline, and that the
order in which subjects have their investigation does not
affect their response to the investigation.

Mechanics of randomisation
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Two period

Two-period crossover trials are the easiest to explain. In the
simplest case, for a two-arm investigation (comparing A with
B, say), subjects will be randomised to either A followed by
B (AB) or to B followed by A (BA). AB and BA are called
sequences and represent the order in which subjects receive
the investigations. In practice, subjects are randomly
assigned to either the sequence AB or the sequence BA,
and to ensure balance, blocking can still be used.

Note that even for retrospective investigations,
randomisation should be considered. For example, in a
study to investigate the agreement between two image
analysts, the analysts could have the images assessed
randomly, with the analysts reading the images in random
order much like an AB/BA design.

Multi-period

All investigations are made on all subjects

Imaging comparisons can be complicated, as there is often
a finite number of subjects on whom a number of
investigations are made, such as:

• a functional magnetic resonance imaging (fMRI)
investigation in which subjects will receive a number of
challenges

• a comparison of different imaging protocols within the
same subject

• an assessment of new technology such as a
comparison of 2D, 3D and 2D and 3D combined SPECT

• a comparison of several readers on the same subjects,
to look at agreement

• a comparison of different therapies or different doses of
the same therapy within a subject.

It is quite easy, therefore, for four or five investigations to be
made on the same subject. If four investigations are made
on the same subject, it will result in 24 different ways of
assigning subjects to these four investigations, and hence
24 sequences. This is all very good, but what if we have only
12 subjects in the trial?

Actually, for multi-period investigations, we do not
necessarily need to use all possible sequences but can
form special sequences to be randomised, called Williams
squares.11

It is again best to illustrate through example. In order to
investigate an even number of investigations, we can build
a Williams square from the following sequence:

0, 1, t, 2, t – 1, 3, t – 2, etc.

where t is the number of interventions minus 1. If we were to
conduct four investigations, then t would be 3, and our
sequences would include 0, 1, 2, 3. We build the sequences
by forming the first row from the result above. We then form
the second by adding 1 to this first row, but where the

number is 3, the new number becomes 0 (we are adding in
base 3). The calculation is simpler than the explanation.

This is known as a Latin square: each investigation appears
in every row and column. The columns here would reflect
different imaging sessions. A Williams square is a special
form of Latin square, such that as well as being balanced
for rows and columns, each investigation is preceded by
each other investigation at least once, e.g. 1 is preceded by
0, 2, and 3. Here we are saying that as well as the order of
investigations being important, the effect of preceding
investigations is too. Hence we ensure balance for the
immediately preceding investigation. This is known as first-
order balance.

If we were conducting a trial in which we were undertaking
four different investigations on 12 subjects, we would
randomise the four sequences above so that each
sequence appeared three times.

For an odd number of investigations, we need to build two
Latin squares with starting sequences

0, 1, t, 2, t – 1, 3, t – 2, etc.

and

… t – 2, 3, t – 1, t, 1, 0.

With five investigations, t = 4, and we would therefore have

and

Not all investigations are made on all subjects

In imaging investigations, there are logistical, practical and
safety considerations to be taken into account. For
example, we may wish to investigate four different imaging
protocols, but these must all be done in one day for each
subject, and for practical reasons we can only schedule
three scans in a day. Similarly, we may wish to look at four

0 1 3 2

1 2 0 3

2 3 1 0

3 0 2 1

0 1 4 2 3

1 2 0 3 4

2 3 1 4 0

3 4 2 0 1

4 0 3 1 2

3 2 4 1 0

4 3 0 2 1

0 4 1 3 2

1 0 2 4 3

2 1 3 0 4
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different protocols but, for safety reasons, we may only be
able to do three scans in the 24 hours we have for each
subject. Although we can still construct Latin squares, we
need to construct a special type of these, known as a
BALANCED INCOMPLETE BLOCK. Again, we will illustrate by
example.

If we could have three sessions for each subject but we
have four investigations, then taking the sequences derived
previously and removing the first column

and the final column

would give us eight sequences as follows:

We would hence have balance for both rows and columns,
as well as first-order balance within eight sequences.

For an odd number of sequences we use a similar
procedure. Using our previous example of having five
investigations and only being able to do three sessions, we
could delete the last two columns from the first five
sequences and the first two columns from the next five
sequences, i.e.

Discussion

In this tutorial we have introduced the basic concepts of
randomisation, including the importance of stratification
and blocking. We have described issues pertinent to
imaging investigations where we may wish to perform
multiple investigations on each subject or the special case
where the number of investigations is greater than the
number of sessions.
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