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Learning 

In this Workbook you will learn how to express a periodic signal f(t) in a series of sines and
cosines. You will learn how to simplify the calculations if the signal happens to be an even
or an odd function. You will learn some brief facts relating to the convergence of the 
Fourier series. You will learn how to approximate a non-periodic signal by a Fourier series.
You will learn how to re-express a standard Fourier series in complex form which paves the
way for a later examination of Fourier transforms. Finally you will learn about some simple
applications of Fourier series. 
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Introduction
You should already know how to take a function of a single variable f(x) and represent it by a
power series in x about any point x0 of interest. Such a series is known as a Taylor series or Taylor
expansion or, if x0 = 0, as a Maclaurin series. This topic was firs met in 16. Such an expansion
is only possible if the function is sufficiently smooth (that is, if it can be differentiated as often as
required). Geometrically this means that there are no jumps or spikes in the curve y = f(x) near
the point of expansion. However, in many practical situations the functions we have to deal with are
not as well behaved as this and so no power series expansion in x is possible. Nevertheless, if the
function is periodic, so that it repeats over and over again at regular intervals, then, irrespective of
the function’s behaviour (that is, no matter how many jumps or spikes it has), the function may be
expressed as a series of sines and cosines. Such a series is called a Fourier series.

Fourier series have many applications in mathematics, in physics and in engineering. For example
they are sometimes essential in solving problems (in heat conduction, wave propagation etc) that
involve partial differential equations. Also, using Fourier series the analysis of many engineering
systems (such as electric circuits or mechanical vibrating systems) can be extended from the case
where the input to the system is a sinusoidal function to the more general case where the input is
periodic but non-sinsusoidal.
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Prerequisites

Before starting this Section you should . . .

• be familiar with trigonometric functions
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Learning Outcomes
On completion you should be able to . . .

• recognise periodic functions

• determine the frequency, the amplitude and
the period of a sinusoid

• represent common periodic functions by
trigonometric Fourier series

2 HELM (2008):
Workbook 23: Fourier Series



®

1. Introduction
You have met in earlier Mathematics courses the concept of representing a function by an infinite
series of simpler functions such as polynomials. For example, the Maclaurin series representing ex

has the form

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

or, in the more concise sigma notation,

ex =
∞∑

n=0

xn

n!

(remembering that 0! is defined as 1).

The basic idea is that for those values of x for which the series converges we may approximate the
function by using only the first few terms of the infinite series.

Fourier series are also usually infinite series but involve sine and cosine functions (or their complex
exponential equivalents) rather than polynomials. They are widely used for approximating periodic
functions. Such approximations are of considerable use in science and engineering. For example,
elementary a.c. theory provides techniques for analyzing electrical circuits when the currents and
voltages present are assumed to be sinusoidal. Fourier series enable us to extend such techniques
to the situation where the functions (or signals) involved are periodic but not actually sinusoidal.
You may also see in 25 that Fourier series sometimes have to be used when solving partial
differential equations.

2. Periodic functions
A function f(t) is periodic if the function values repeat at regular intervals of the independent variable
t. The regular interval is referred to as the period. See Figure 1.

f(t)

t
period

Figure 1
If P denotes the period we have

f(t + P ) = f(t)

for any value of t.
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The most obvious examples of periodic functions are the trigonometric functions sin t and cos t, both
of which have period 2π (using radian measure as we shall do throughout this Workbook) (Figure
2). This follows since

sin(t + 2π) = sin t and cos(t + 2π) = cos t

t

period

y = sin t y = cos t

π 2π

1

t

period

π 2π

1

Figure 2
The amplitude of these sinusoidal functions is the maximum displacement from y = 0 and is clearly
1. (Note that we use the term sinusoidal to include cosine as well as sine functions.)
More generally we can consider a sinusoid

y = A sin nt

which has maximum value, or amplitude, A and where n is usually a positive integer.
For example

y = sin 2t

is a sinusoid of amplitude 1 and period
2π

2
= π (Figure 3). The fact that the period is π follows

because

sin 2(t + π) = sin(2t + 2π) = sin 2t

for any value of t.

period

y = sin 2t

π
2

π t

1

Figure 3
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We see that y = sin 2t has half the period of sin t, π as opposed to 2π (Figure 4). This can
alternatively be phrased by stating that sin 2t oscillates twice as rapidly (or has twice the frequency)
of sin t.

y = sin 2t

π t

1

y = sin t

2π

Figure 4

In general y = A sin nt has amplitude A, period
2π

n
and completes n oscillations when t changes

by 2π. Formally, we define the frequency of a sinusoid as the reciprocal of the period:

frequency =
1

period

and the angular frequency, often denoted the Greek Letter ω (omega) as

angular frequency = 2π × frequency =
2π

period

Thus y = A sin nt has frequency
n

2π
and angular frequency n.

Task

State the amplitude, period, frequency and angular frequency of

(a) y = 5 cos 4t (b) y = 6 sin
2t

3
.

Your solution

(a)

Answer

amplitude 5, period
2π

4
=

π

2
, frequency

2

π
, angular frequency 4

Your solution

(b)

Answer

amplitude 6, period 3π, frequency
1

3π
, angular frequency

2

3
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Harmonics
In representing a non-sinusoidal function of period 2π by a Fourier series we shall see shortly that
only certain sinusoids will be required:

(a) A1 cos t (and B1 sin t)

These also have period 2π and together are referred to as the first harmonic (or

fundamental harmonic).

(b) A2 cos 2t (and B2 sin 2t)

These have half the period, and double the frequency, of the first harmonic and are
referred to as the second harmonic.

(c) A3 cos 3t (and B3 sin 3t)

These have period
2π

3
and constitute the third harmonic.

In general the Fourier series of a function of period 2π will require harmonics of the type

An cos nt ( and Bn sin nt) where n = 1, 2, 3, . . .

Non-sinusoidal periodic functions
The following are examples of non-sinusoidal periodic functions (they are often called “waves”).

Square wave

π t

1

2π

−1

−π

f(t)

Figure 5

Analytically we can describe this function as follows:

f(t) =

{
−1 −π < t < 0
+1 0 < t < π

(which gives the definition over one period)

f(t + 2π) = f(t) (which tells us that the function has period 2π)

Saw-tooth wave

t

f(t)

−2 2 4

4

Figure 6

In this case we can describe the function as follows:

f(t) = 2t 0 < t < 2 f(t + 2) = f(t)

Here the period is 2, the frequency is
1

2
and the angular frequency is

2π

2
= π.
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Triangular wave

t

f(t)

π 2π

π

−π

Figure 7

Here we can conveniently define the function using −π < t < π as the “basic period”:

f(t) =

{
−t −π < t < 0

t 0 < t < π

or, more concisely,

f(t) = |t| − π < t < π

together with the usual statement on periodicity

f(t + 2π) = f(t).

Task

Write down an analytic definition for the following periodic function:

t

f(t)

2
−1

−5 5

2

3−2

−3

Your solution

Answer

f(t) =

{
2− t 0 < t < 3
−1 3 < t < 5

f(t + 5) = f(t)
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Task

Sketch the graphs of the following periodic functions showing all relevant values:

(a) f(t) =


t2/2 0 < t < 4

8 4 < t < 6
0 6 < t < 8

f(t + 8) = f(t)

(b) f(t) = 2t− t2 0 < t < 2 f(t + 2) = f(t)

Your solution

Answer

t

f(t)

4 86

(a)

(b)

8

t

f(t)

1 2

period

period

Figure 9
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