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Introduction
Separation of variables is a technique commonly used to solve first order ordinary differential
equations. It is so-called because we rearrange the equation to be solved such that all terms involving
the dependent variable appear on one side of the equation, and all terms involving the independent
variable appear on the other. Integration completes the solution. Not all first order equations can be
rearranged in this way so this technique is not always appropriate. Further, it is not always possible
to perform the integration even if the variables are separable.

In this Section you will learn how to decide whether the method is appropriate, and how to apply it
in such cases.

An exact first order differential equation is one which can be solved by simply integrating both sides.
Only very few first order differential equations are exact. You will learn how to recognise these and
solve them. Some others may be converted simply to exact equations and that is also considered

Whilst exact differential equations are few and far between an important class of differential equations
can be converted into exact equations by multiplying through by a function known as the integrating
factor for the equation. In the last part of this Section you will learn how to decide whether an
equation is capable of being transformed into an exact equation, how to determine the integrating
factor, and how to obtain the solution of the original equation.
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Prerequisites

Before starting this Section you should . . .

• understand what is meant by a differential
equation; (Section 19.1)

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• explain what is meant by separating the
variables of a first order differential equation

• determine whether a first order differential
equation is separable

• solve a variety of equations using the
separation of variables technique
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1. Separating the variables in first order ODEs
In this Section we consider differential equations which can be written in the form

dy

dx
= f(x)g(y)

Note that the right-hand side is a product of a function of x, and a function of y. Examples of such
equations are

dy

dx
= x2 y3,

dy

dx
= y2 sin x and

dy

dx
= y ln x

Not all first order equations can be written in this form. For example, it is not possible to rewrite
the equation

dy

dx
= x2 + y3

in the form

dy

dx
= f(x)g(y)

Task

Determine which of the following differential equations can be written in the form

dy

dx
= f(x)g(y)

If possible, rewrite each equation in this form.

(a)
dy

dx
=

x2

y2
, (b)

dy

dx
= 4x2 + 2y2, (c) y

dy

dx
+ 3x = 7

Your solution

Answer

(a)
dy

dx
= x2

(
1

y2

)
, (b) cannot be written in the stated form,

(c) Reformulating gives
dy

dx
= (7− 3x)× 1

y
which is in the required form.
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The variables involved in differential equations need not be x and y. Any symbols for variables may
be used. Other first order differential equations are

dz

dt
= tez dθ

dt
= −θ and

dv

dr
= v

(
1

r2

)
Given a differential equation in the form

dy

dx
= f(x)g(y)

we can divide through by g(y) to obtain

1

g(y)

dy

dx
= f(x)

If we now integrate both sides of this equation with respect to x we obtain∫
1

g(y)

dy

dx
dx =

∫
f(x) dx

that is∫
1

g(y)
dy =

∫
f(x) dx

We have separated the variables because the left-hand side contains only the variable y, and the
right-hand side contains only the variable x. We can now try to integrate each side separately. If
we can actually perform the required integrations we will obtain a relationship between y and x.
Examples of this process are given in the next subsection.

Key Point 1

Method of Separation of Variables

The solution of the equation
dy

dx
= f(x)g(y)

may be found from separating the variables and integrating:∫
1

g(y)
dy =

∫
f(x) dx
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2. Applying the method of separation of variables to ODEs

Example 3
Use the method of separation of variables to solve the differential equation

dy

dx
=

3x2

y

Solution

The equation already has the form

dy

dx
= f(x)g(y)

where

f(x) = 3x2 and g(y) = 1/y.

Dividing both sides by g(y) we find

y
dy

dx
= 3x2

Integrating both sides with respect to x gives∫
y
dy

dx
dx =

∫
3x2 dx

that is∫
y dy =

∫
3x2 dx

Note that the left-hand side is an integral involving just y; the right-hand side is an integral involving
just x. After integrating both sides with respect to the stated variables we find

1
2
y2 = x3 + c

where c is a constant of integration. (You might think that there would be a constant on the
left-hand side too. You are quite right but the two constants can be combined into a single constant
and so we need only write one.)

We now have a relationship between y and x as required. Often it is sufficient to leave your answer
in this form but you may also be required to obtain an explicit relation for y in terms of x. In this
particular case

y2 = 2x3 + 2c

so that

y = ±
√

2x3 + 2c

14 HELM (2008):
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Task

Use the method of separation of variables to solve the differential equation

dy

dx
=

cos x

sin 2y

First separate the variables so that terms involving y and
dy

dx
appear on the left, and terms involving

x appear on the right:

Your solution

Answer
You should have obtained

sin 2y
dy

dx
= cos x

Now reformulate both sides as integrals:

Your solution

Answer∫
sin 2y

dy

dx
dx =

∫
cos x dx that is

∫
sin 2y dy =

∫
cos x dx

Now integrate both sides:

Your solution

Answer

−1
2
cos 2y = sin x + c

Finally, rearrange to obtain an expression for y in terms of x:

Your solution

Answer

y = 1
2
cos−1(D − 2 sin x) where D = −2c

HELM (2008):
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Exercises

1. Solve the equation

dy

dx
=

e−x

y
.

2. Solve the following equation subject to the condition y(0) = 1:

dy

dx
= 3x2e−y

3. Find the general solution of the following equations:

(a)
dy

dx
= 3, (b)

dy

dx
=

6 sin x

y
4. (a) Find the general solution of the equation

dx

dt
= t(x− 2).

(b) Find the particular solution which satisfies the condition x(0) = 5.

5. Some equations which do not appear to be separable can be made so by means of a suitable
substitution. By means of the substitution z = y/x solve the equation

dy

dx
=

y2

x2
+

y

x
+ 1

6. The equation

iR + L
di

dt
= E

where R, L and E are constants arises in electrical circuit theory. This equation can be
solved by separation of variables. Find the solution which satisfies the condition i(0) = 0.

Answers

1. y = ±
√

D − 2e−x.

2. y = ln(x3 + e).

3 (a) y = 3x + C, (b) 1
2
y2 = C − 6 cos x.

4. (a) x = 2 + Aet2/2, (b) x = 2 + 3et2/2.

5. z = tan(ln Dx) so that y = x tan(ln Dx).

6. i =
E

R
(1− e−t/τ ) where τ = L/R.
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3. Exact equations

Consider the differential equation

dy

dx
= 3x2

By direct integration we find that the general solution of this equation is

y = x3 + C

where C is, as usual, an arbitrary constant of integration.

Next, consider the differential equation

d

dx
(yx) = 3x2.

Again, by direct integration we find that the general solution is

yx = x3 + C.

We now divide this equation by x to obtain

y = x2 +
C

x
.

The differential equation
d

dx
(yx) = 3x2 is called an exact equation. It can effectively be solved by

integrating both sides.

Task

Solve the equations (a)
dy

dx
= 5x4 (b)

d

dx
(x3y) = 5x4

Your solution

(a) y = (b) y =

Answer

(a) y = x5 + C (b) x3y = x5 + C so that y = x2 +
C

x3
.

If we consider examples of this kind in a more general setting we obtain the following Key Point:
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Key Point 2

The solution of the equation
d

dx
(f(x) · y) = g(x)

is

f(x) · y =

∫
g(x) dx or y =

1

f(x)

∫
g(x) dx

4. Solving exact equations
As we have seen, the differential equation

d

dx
(yx) = 3x2 has solution y = x2 +C/x. In the solution,

x2 is called the definite part and C/x is called the indefinite part (containing the arbitrary constant
of integration). If we take the definite part of this solution, i.e. yd = x2, then

d

dx
(yd · x) =

d

dx
(x2 · x) =

d

dx
(x3) = 3x2.

Hence yd = x2 is a solution of the differential equation.
Now if we take the indefinite part of the solution i.e. yi = C/x then

d

dx
(yi · x) =

d

dx

(
C

x
· x

)
=

d

dx
(C) = 0.

It is always the case that the general solution of an exact equation is in two parts: a definite part
yd(x) which is a solution of the differential equation and an indefinite part yi(x) which satisfies a
simpler version of the differential equation in which the right-hand side is zero.

Task

(a) Solve the equation

d

dx
(y cos x) = cos x

(b) Verify that the indefinite part of the solution satisfies the equation

d

dx
(y cos x) = 0.

(a) Integrate both sides of the first differential equation:

Your solution

18 HELM (2008):
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Answer

y cos x =

∫
cos x dx = sin x + C leading to y = tan x + C sec x

(b) Substitute for y in the indefinite part (i.e. the part which contains the arbitrary constant) in the
second differential equation:

Your solution

Answer
The indefinite part of the solution is yi = C sec x and so yi cos x = C and

d

dx
(yi cos x) =

d

dx
(C) = 0

5. Recognising an exact equation
The equation

d

dx
(yx) = 3x2 is exact, as we have seen. If we expand the left-hand side of this

equation (i.e. differentiate the product) we obtain

x
dy

dx
+ y.

Hence the equation

x
dy

dx
+ y = 3x2

must be exact, but it is not so obvious that it is exact as in the original form. This leads to the
following Key Point:

Key Point 3

The equation

f(x)
dy

dx
+ y f ′(x) = g(x)

is exact. It can be re-written as

d

dx
(y f(x)) = g(x) so that y f(x) =

∫
g(x) dx

HELM (2008):
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Example 4
Solve the equation

x3 dy

dx
+ 3x2y = x

Solution

Comparing this equation with the form in Key Point 3 we see that f(x) = x3 and g(x) = x. Hence
the equation can be written

d

dx
(yx3) = x

which has solution

yx3 =

∫
x dx = 1

2
x2 + C.

Therefore

y =
1

2x
+

C

x3
.

Task

Solve the equation sin x
dy

dx
+ y cos x = cos x.

Your solution

Answer
You should obtain y = 1 + Ccosec x since, here f(x) = sin x and g(x) = cos x. Then

d

dx
(y sin x) = cos x and y sin x =

∫
cos x dx = sin x + C

Finally y = 1 + C cosec x.
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Exercises

1. Solve the equation
d

dx
(yx2) = x3.

2. Solve the equation
d

dx
(yex) = e2x given the condition y(0) = 2.

3. Solve the equation e2x dy

dx
+ 2e2xy = x2.

4. Show that the equation x2 dy

dx
+ 2xy = x3 is exact and obtain its solution.

5. Show that the equation x2 dy

dx
+ 3xy = x3 is not exact.

Multiply the equation by x and show that the resulting equation is exact and obtain its solution.

Answers

1. y =
x2

4
+

C

x2
. 2. y = 1

2
ex + 3

2
e−x. 3. y =

(
1
3
x3 + C

)
e−2x. 4. y =

1

4
x2 +

C

x2
.

5. y =
1

5
x2 +

C

x3
.

6. The integrating factor
The equation

x2 dy

dx
+ 3x y = x3

is not exact. However, if we multiply it by x we obtain the equation

x3 dy

dx
+ 3x2y = x4.

This can be re-written as

d

dx
(x3y) = x4

which is an exact equation with solution

x3y =

∫
x4dx

so x3y =
1

5
x5 + C

and hence

y =
1

5
x2 +

C

x3
.

The function by which we multiplied the given differential equation in order to make it exact is called
an integrating factor. In this example the integrating factor is simply x.

HELM (2008):
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Task

Which of the following differential equations can be made exact by multiplying by
x2?

(a)
dy

dx
+

2

x
y = 4 (b) x

dy

dx
+ 3y = x2 (c)

1

x

dy

dx
− 1

x2
y = x

(d)
1

x

dy

dx
+

1

x2
y = 3.

Where possible, write the exact equation in the form
d

dx
(f(x) y) = g(x).

Your solution

Answer

(a) Yes. x2 dy

dx
+ 2xy = 4x2 becomes

d

dx
(x2y) = 4x2.

(b) Yes. x3 dy

dx
+ 3x2y = x4 becomes

d

dx
(x3y) = x4.

(c) No. This equation is already exact as it can be written in the form
d

dx

(
1

x
y

)
= x.

(d) Yes. x
dy

dx
+ y = 3x2 becomes

d

dx
(xy) = 3x2.

7. Finding the integrating factor for linear ODEs
The differential equation governing the current i in a circuit with inductance L and resistance R in
series subject to a constant applied electromotive force E cos ωt, where E and ω are constants, is

L
di

dt
+ Ri = E cos ωt (1)

This is an example of a linear differential equation in which i is the dependent variable and t is
the independent variable. The general standard form of a linear first order differential equation is
normally written with ‘y’ as the dependent variable and with ‘x’ as the independent variable and

arranged so that the coefficient of
dy

dx
is 1. That is, it takes the form:

dy

dx
+ f(x) y = g(x) (2)

in which f(x) and g(x) are functions of x.
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Comparing (1) and (2), x is replaced by t and y by i to produce
di

dt
+ f(t) i = g(t). The function

f(t) is the coefficient of the dependent variable in the differential equation. We shall describe the
method of finding the integrating factor for (1) and then generalise it to a linear differential equation
written in standard form.

Step 1 Write the differential equation in standard form i.e. with the coefficient of the derivative
equal to 1. Here we need to divide through by L:

di

dt
+

R

L
i =

E

L
cos ωt.

Step 2 Integrate the coefficient of the dependent variable (that is, f(t) = R/L) with respect to
the independent variable (that is, t), and ignoring the constant of integration∫

R

L
dt =

R

L
t.

Step 3 Take the exponential of the function obtained in Step 2.

This is the integrating factor (I.F.)

I.F. = eRt/L.

This leads to the following Key Point on integrating factors:

Key Point 4

The linear differential equation (written in standard form):

dy

dx
+ f(x)y = g(x) has an integrating factor I.F. = exp

[∫
f(x)dx

]

Task

Find the integrating factors for the equations

(a) x
dy

dx
+ 2x y = xe−2x (b) t

di

dt
+ 2t i = te−2t (c)

dy

dx
− (tan x)y = 1.

Your solution

HELM (2008):
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Answer

(a) Step 1 Divide by x to obtain
dy

dx
+ 2y = e−2x

Step 2 The coefficient of the independent variable is 2 hence

∫
2 dx = 2x

Step 3 I.F. = e2x

(b) The only difference from (a) is that i replaces y and t replaces x. Hence I.F. = e2t.

(c) Step 1 This is already in the standard form.

Step 2

∫
− tan x dx =

∫
− sin x

cos x
dx = ln cos x.

Step 3 I.F. = eln cos x = cos x

8. Solving equations via the integrating factor
Having found the integrating factor for a linear equation we now proceed to solve the equation.
Returning to the differential equation, written in standard form:

di

dt
+

R

L
i =

E

L
cos ωt

for which the integrating factor is

eRt/L

we multiply the equation by the integrating factor to obtain

eRt/L di

dt
+

R

L
eRt/L i =

E

L
eRt/L cos ωt

At this stage the left-hand side of this equation can always be simplified as follows:

d

dt
(eRt/L i) =

E

L
eRt/L cos ωt.

Now this is in the form of an exact differential equation and so we can integrate both sides to obtain
the solution:

eRt/L i =
E

L

∫
eRt/L cos ωt dt.

All that remains is to complete the integral on the right-hand side. Using the method of integration
by parts we find∫

eRt/L cos ωt dt =
L

L2ω2 + R2
[ωL sin ωt + R cos ωt] eRt/L

Hence

eRt/L i =
E

L2ω2 + R2
[ωL sin ωt + R cos ωt] eRt/L + C.

Finally

i =
E

L2ω2 + R2
[ωL sin ωt + R cos ωt] + C e−Rt/L.
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is the solution to the original differential equation (1). Note that, as we should expect for the solution
to a first order differential equation, it contains a single arbitrary constant C.

Task

Using the integrating factors found earlier in the Task on pages 22-23, find the
general solutions to the differential equations

(a) x2 dy

dx
+ 2x2y = x2e−2x (b) t2

di

dt
+ 2t2i = t2e−2t (c)

dy

dx
− (tan x)y = 1.

Your solution

Answer

(a) The standard form is
dy

dx
+ 2y = e−2x for which the integrating factor is e2x.

e2x dy

dx
+ 2e2x y = 1

i.e.
d

dx
(e2x y) = 1 so that e2xy = x + C

leading to y = (x + C)e−2x

(b) The general solution is i = (t+C)e−2t as this problem is the same as (a) with different variables.

(c) The equation is in standard form and the integrating factor is cos x.

then
d

dx
(cos x y) = cos x so that cos x y =

∫
cos x dx = sin x + C

giving y = tan x + C sec x
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Engineering Example 1

An RC circuit with a single frequency input

Introduction

The components in RC circuits containing resistance, inductance and capacitance can be chosen
so that the circuit filters out certain frequencies from the input. A particular kind of filter circuit
consists of a resistor and capacitor in series and acts as a high cut (or low pass) filter. The high cut
frequency is defined to be the frequency at which the magnitude of the voltage across the capacitor
(the output voltage) is 1/

√
2 of the magnitude of the input voltage.

Problem in words

Calculate the high cut frequency for an RC circuit is subjected to a single frequency input of angular
frequency ω and magnitude vi.

(a) Find the steady state solution of the equation

R
dq

dt
+

q

C
= vie

jωt

and hence find the magnitude of

(i) the voltage across the capacitor vc =
q

C

(ii) the voltage across the resistor vR = R
dq

dt

(b) Using the impedance method of 12.6 confirm your results to part (a) by calculating

(i) the voltage across the capacitor vc

(ii) the voltage across the resistor vR in response to a single frequency of angular frequency ω and
magnitude vi.

(c) For the case where R = 1 kΩ and C = 1 µF, find the ratio
|vc|
|vi|

and complete the table below

ω 10 102 103 104 105 106

|vc|
|vi|

(d) Explain why the table results show that a RC circuit acts as a high-cut filter and find the value

of the high-cut frequency, defined as fhc = ωhc/2π, such that
|vc|
|vi|

=
1√
2
.
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Mathematical statement of the problem

We need to find a particular solution to the differential equation R
dq

dt
+

q

C
= vie

jωt.

This will give us the steady state solution for the charge q. Using this we can find vc =
q

C
and

vR = R
dq

dt
. These should give the same result as the values calculated by considering the impedances

in the circuit. Finally we can calculate
|vc|
|vi|

and fill in the table of values as required and find the

high-cut frequency from
|vc|
|vi|

=
1√
2

and fhc = ωhc/2π.

Mathematical solution

(a) To find a particular solution, we try a function of the form q = c0e
jωt which means that

dq

dt
= jωc0e

jωt.

Substituting into R
dq

dt
+

q

C
= vie

jωt we get

Rjωc0e
jωt +

c0e
jωt

C
= vie

jωt ⇒ Rjωc0 +
c0

C
= vi

⇒ c0 =
vi

Rjω + 1
C

=
Cvi

RCjω + 1
⇒ q =

Cvi

RCjω + 1
ejωt

Thus

(i) vc =
q

C
=

vi

RCjω + 1
ejωt and (ii) vR =

dq

dt
=

RCvijω

RCjω + 1
ejωt

(b) We use the impedance to determine the voltage across each of the elements. The applied voltage
is a single frequency of angular frequency ω and magnitude vi such that V = vie

jωt.

For an RC circuit, the impedance of the circuit is Z = ZR + Zc where ZR is the impedance of the

resistor R and Zc is the impedance of the capacitor Zc = − j

ωC
.

Therefore Z = R− j

ωC
.

The current can be found using v = Zi giving

vie
jωt =

(
R− j

ωC

)
i ⇒ i =

vie
jωt

R− j
ωC

We can now use vc = zci and vR = zRi giving

(i) vc =
q

C
= − j

ωC
× vi

R− j
ωC

ejωt =
vi

RCjω + 1
ejωt

(ii) vR =
Rvi

R− j
ωC

ejωt =
RCvijω

RCjω + 1
ejωt

which confirms the result in part (a) found by solving the differential equation.

(c) When R = 1000 Ω and C = 10−6F

vc =
vi

RCjω + 1
ejωt =

vi

10−3jω + 1
ejωt
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So
|vc|
|vi|

=

∣∣∣∣ 1

10−3jω + 1

∣∣∣∣ |ejωt| =
∣∣∣∣ 1

10−3jω + 1

∣∣∣∣ =
1√

10−6ω2 + 1

Table 1: Values of

∣∣∣∣vc

vi

∣∣∣∣ for a range of values of ω

ω 10 102 103 104 105 106

|vc|
|vi|

0.99995 0.995 0.707 0.00995 0.0099995 0.001

(d) Table 1 shows that a RC circuit can be used as a high-cut filter because for low values of ω,
|vc|
|vi|

is approximately 1 and for high values of ω,
|vc|
|vi|

is approximately 0. So the circuit will filter out high

frequency values.

|vc|
|vi|

=
1√
2

when
1√

10−6ω2 + 1
=

1√
2

⇔ 10−6ω2 + 1 = 2 ⇔ 10−6ω2 = 1 ⇔ ω2 = 106

As we are considering ω to be a positive frequency, ω = 1000.

So fhc =
ωhc

2π
=

1000

2π
≈ 159 Hz.

Interpretation

We have shown that for an RC circuit finding the steady state solution of the differential equation

with a single frequency input voltage yields the same result for
|vc|
|vi|

and
|vR|
|vi|

as found by working

with the complex impedances for the circuit.

An RC circuit can be used as a high-cut filter and in the case where R = 1 kΩ, C = 1 µF we found
the high-cut frequency to be at approximately 159 Hz.

This means that the circuit will pass frequencies less than this value and remove frequencies greater
than this value.
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Exercises

1. Solve the equation x2 dy

dx
+ x y = 1.

2. Find the solution of the equation x
dy

dx
− y = x subject to the condition y(1) = 2.

3. Find the general solution of the equation
dy

dt
+ (tan t) y = cos t.

4. Solve the equation
dy

dt
+ (cot t) y = sin t.

5. The temperature θ (measured in degrees) of a body immersed in an atmosphere of varying

temperature is given by
dθ

dt
+ 0.1θ = 5− 2.5t. Find the temperature at time t if θ = 60◦C

when t = 0.

6. In an LR circuit with applied voltage E = 10(1− e−0.1t) the current i is given by

L
di

dt
+ Ri = 10(1− e−0.1t).

If the initial current is i0 find i subsequently.

Answers

1. y =
1

x
ln x +

C

x

2. y = x ln x + 2x

3. y = (t + C) cos t

4. y =
(

1
2

t− 1
4
sin 2t + C

)
cosec t

5. θ = 300− 25t− 240e−0.1t

6. i =
10

R
−

(
100

10R− L

)
e−0.1t +

[
i0 +

10L

R(10R− L)

]
e−Rt/L
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