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Introduction
In this Section we examine how functions may be expressed in terms of power series. This is an
extremely useful way of expressing a function since (as we shall see) we can then replace ‘complicated’
functions in terms of ‘simple’ polynomials. The only requirement (of any significance) is that the
‘complicated’ function should be smooth; this means that at a point of interest, it must be possible
to differentiate the function as often as we please.
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Prerequisites
Before starting this Section you should . . .

• have knowledge of power series and of the
ratio test

• be able to differentiate simple functions

• be familiar with the rules for combining
power series'
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Learning Outcomes
On completion you should be able to . . .

• find the Maclaurin and Taylor series
expansions of given functions

• find Maclaurin expansions of functions by
combining known power series together

• find Maclaurin expansions by using
differentiation and integration
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1. Maclaurin and Taylor series
As we shall see, many functions can be represented by power series. In fact we have already seen in
earlier Sections examples of such a representation:

1

1− x
= 1 + x + x2 + · · · |x| < 1

ln(1 + x) = x− x2

2
+

x3

3
− · · · − 1 < x ≤ 1

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · all x

The first two examples show that, as long as we constrain x to lie within the domain |x| < 1

(or, equivalently, −1 < x < 1), then in the first case
1

1− x
has the same numerical value as

1+x+x2 + · · · and in the second case ln(1+x) has the same numerical value as x− x2

2
+

x3

3
−· · · .

In the third example we see that ex has the same numerical value as 1 + x +
x2

2!
+ · · · but in this

case there is no restriction to be placed on the value of x since this power series converges for all
values of x. Figure 5 shows this situation geometrically. As more and more terms are used from the

series 1 + x +
x2

2!
+

x3

3!
· · · the curve representing ex is a better and better approximation. In (a) we

show the linear approximation to ex. In (b) and (c) we show, respectively, the quadratic and cubic
approximations.
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y

ex

1 + x

1 + x +
x2

2!
1 + x +

x2

2!
+

x3

3!

(a) (b) (c)
x

y

x

y

ex
ex

Figure 5: Linear, quadratic and cubic approximations to ex

These power series representations are extremely important, from many points of view. Numerically,

we can simply replace the function
1

1− x
by the quadratic expression 1 + x + x2 as long as x is

so small that powers of x greater than or equal to 3 can be ignored in comparison to quadratic
terms. This approach can be used to approximate more complicated functions in terms of simpler
polynomials. Our aim now is to see how these power series expansions are obtained.
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2. The Maclaurin series
Consider a function f(x) which can be differentiated at x = 0 as often as we please. For example
ex, cos x, sin x would fit into this category but |x| would not.
Let us assume that f(x) can be represented by a power series in x:

f(x) = b0 + b1x + b2x
2 + b3x

3 + b4x
4 + · · · =

∞∑
p=0

bpx
p

where b0, b1, b2, . . . are constants to be determined.

If we substitute x = 0 then, clearly f(0) = b0

The other constants can be determined by further differentiating and, on each differentiation, sub-
stituting x = 0. For example, differentiating once:

f ′(x) = 0 + b1 + 2b2x + 3b3x
2 + 4b4x

3 + · · ·

so, putting x = 0, we have f ′(0) = b1.
Continuing to differentiate:

f ′′(x) = 0 + 2b2 + 3(2)b3x + 4(3)b4x
2 + · · ·

so

f ′′(0) = 2b2 or b2 =
1

2
f ′′(0)

Further:

f ′′′(x) = 3(2)b3+4(3)(2)b4x+· · · so f ′′′(0) = 3(2)b3 implying b3 =
1

3(2)
f ′′′(0)

Continuing in this way we easily find that (remembering that 0! = 1)

bn =
1

n!
f (n)(0) n = 0, 1, 2, . . .

where f (n)(0) means the value of the nth derivative at x = 0 and f (0)(0) means f(0).
Bringing all these results together we have:

Key Point 14

Maclaurin Series

If f(x) can be differentiated as often as required:

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · · =

∞∑
p=0

xp

p!
f (p)(0)

This is called the Maclaurin expansion of f(x).
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Example 4
Find the Maclaurin expansion of cos x.

Solution

Here f(x) = cos x and, differentiating a number of times:

f(x) = cos x, f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x etc.

Evaluating each of these at x = 0:

f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0 etc.

Substituting into f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · · , gives:

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

The reader should confirm (by finding the radius of convergence) that this series is convergent for
all values of x. The geometrical approximation to cos x by the first few terms of its Maclaurin series
are shown in Figure 6.

x

y yy

xxcos x
1 − x2

2!

1 − x2

2!
+

x4

4!

cos x cos x

Figure 6: Linear, quadratic and cubic approximations to cos x

Task

Find the Maclaurin expansion of ln(1 + x).

(Note that we cannot find a Maclaurin expansion of the function ln x since ln x
does not exist at x = 0 and so cannot be differentiated at x = 0.)

Find the first four derivatives of f(x) = ln(1 + x):

Your solution

f ′(x) = f ′′(x) = f ′′′(x) = f ′′′′(x) =
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Answer

f ′(x) =
1

1 + x
, f ′′(x) =

−1

(1 + x)2
, f ′′′(x) =

2

(1 + x)3
,

generally: f (n)(x) =
(−1)n+1(n− 1)!

(1 + x)n

Now obtain f(0), f ′(0), f ′′(0), f ′′′(0):

Your solution

f(0) = f ′(0) = f ′′(0) = f ′′′(0) =

Answer
f(0) = 0 f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2,

generally: f (n)(0) = (−1)n+1(n− 1)!

Hence, obtain the Maclaurin expansion of ln(1 + x):

Your solution

ln(1 + x) =

Answer

ln(1 + x) = x− x2

2
+

x3

3
. . . +

(−1)n+1

n
xn + · · · (This was obtained in Section 16.4, page 37.)

Now obtain the radius of convergence and consider the situation at the boundary values:

Your solution

Radius of convergence R =

Answer
R = 1. Also at x = 1 the series is convergent (alternating harmonic series) and at x = −1 the
series is divergent. Hence this Maclaurin expansion is only valid if −1 < x ≤ 1.

The geometrical closeness of the polynomial terms with the function ln(1 + x) for −1 < x ≤ 1 is
displayed in Figure 7:

y

x

y

x

y

x

x

x − x2

2

x − x2

2
+

x3

3

ln(1 + x) ln(1 + x) ln(1 + x)

Figure 7: Linear, quadratic and cubic approximations to ln(1 + x)
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Note that when x = 1 ln 2 = 1− 1

2
+

1

3
− 1

4
· · · so the alternating harmonic series converges to

ln 2 ' 0.693, as stated in Section 16.2, page 17.

The Maclaurin expansion of a product of two functions: f(x)g(x) is obtained by multiplying together
the Maclaurin expansions of f(x) and of g(x) and collecting like terms together. The product series
will have a radius of convergence equal to the smaller of the two separate radii of convergence.

Example 5
Find the Maclaurin expansion of ex ln(1 + x).

Solution

Here, instead of finding the derivatives of f(x) = ex ln(1+x), we can more simply multiply together
the Maclaurin expansions for ex and ln(1 + x) which we already know:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · all x

and

ln(1 + x) = x− x2

2
+

x3

3
+ · · · − 1 < x ≤ 1

The resulting power series will only be convergent if −1 < x ≤ 1. Multiplying:

ex ln(1 + x) =

(
1 + x +

x2

2!
+

x3

3!
+ · · ·

) (
x− x2

2
+

x3

3
+ · · ·

)

= x− x2

2
+

x3

3
− x4

4
+ · · ·

+ x2 − x3

2
+

x4

3
+ · · ·

+
x3

2
− x4

4
· · ·

+
x4

6
· · ·

= x +
x2

2
+

x3

3
+

3x5

40
+ · · · − 1 < x ≤ 1

(You must take care not to miss relevant terms when carrying through the multiplication.)
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Task

Find the Maclaurin expansion of cos2 x up to powers of x4. Hence write down
the expansion of sin2 x to powers of x6.

First, write down the expansion of cos x:

Your solution

cos x =

Answer

cos x = 1− x2

2!
+

x4

4!
+ · · ·

Now, by multiplication, find the expansion of cos2 x:

Your solution

cos2 x =

Answer

cos2 x =

(
1− x2

2!
+

x4

4!
· · ·

) (
1− x2

2!
+

x4

4!
· · ·

)
= (1− x2

2!
+

x4

4!
· · · ) + (−x2

2!
+

x4

4
· · · ) + (

x4

4!
· · · ) + · · · = 1− x2 +

x4

3
− 2x6

45
· · ·

Now obtain the expansion of sin2 x using a suitable trigonometric identity:

Your solution

sin2 x =

Answer

sin2 x = 1− cos2 x = 1−
(

1− x2 +
x4

3
− 2x6

45
+ · · ·

)
= x2 − x4

3
+

2x6

45
+ · · ·

As an alternative approach the reader could obtain the power series expansion for cos2 x by using the

trigonometric identity cos2 x ≡ 1

2
(1 + cos 2x).
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Example 6
Find the Maclaurin expansion of tanh x up to powers of x5.

Solution

The first two derivatives of f(x) = tanh x are

f ′(x) = sech2x f ′′(x) = −2sech2x tanh x f ′′′(x) = 4sech2x tanh2 x− 2sech4x · · ·

giving f(0) = 0, f ′(0)− 1, f ′′(0) = 0 f ′′′(0) = −2 · · ·

This leads directly to the Maclaurin expansion as tanh x = 1− 1

3
x3 +

2

15
x5 · · ·

Example 7
The relationship between the wavelength, L, the wave period, T , and the water

depth, d, for a surface wave in water is given by: L =
gT 2

2π
tanh

(
2πd

L

)
In a particular case the wave period was 10 s and the water depth was 6.1 m.
Taking the acceleration due to gravity, g, as 9.81 m s−2 determine the wave
length.

[Hint: Use the series expansion for tanh x developed in Example 6.]

Solution

Substituting for the wave period, water depth and g we get

L =
9.81× 102

2π
tanh

(
2π × 6.1

L

)
=

490.5

π
tanh

(
12.2π

L

)
The series expansion of tanh x is given by tanh x = x− x3

3
+

2x5

15
+ · · ·

Using the series expansion of tanh x we can approximate the equation as

L =
490.5

π

{(
12.2π

L

)
− 1

3

(
12.2π

L

)3

+ · · ·

}
Multiplying through by πL3 the equation becomes

πL4 = 490.5× 12.2πL2 − 490.5

3
× (12.2π)3

This equation can be rewritten as L4 − 5984.1L2 + 2930198 = 0

Solving this as a quadratic in L2 we get L = 74 m.

Using Newton-Raphson iteration this can be further refined to give a wave length of 73.9 m.
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3. Differentiation of Maclaurin series
We have already noted that, by the binomial series,

1

1− x
= 1 + x + x2 + x3 + · · · |x| < 1

Thus, with x replaced by −x

1

1 + x
= 1− x + x2 − x3 + · · · |x| < 1

We have previously obtained the Maclaurin expansion of ln(1 + x):

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · − 1 < x ≤ 1

Now, we differentiate both sides with respect to x:

1

1 + x
= 1− x + x2 − x3 + · · ·

This result matches that found from the binomial series and demonstrates that the Maclaurin ex-
pansion of a function f(x) may be differentiated term by term to give a series which will be the

Maclaurin expansion of
df

dx
.

As we noted in Section 16.4 the derived series will have the same radius of convergence as the
original series.

Task

Find the Maclaurin expansion of (1− x)−3 and state its radius of convergence.

First write down the expansion of (1− x)−1:

Your solution
1

1− x

Answer
1

1− x
= 1 + x + x2 + · · · |x| < 1

Now, by differentiation, obtain the expansion of
1

(1− x)2
:

Your solution
1

(1− x)2
=

d

dx

(
1

1− x

)
=

Answer
1

(1− x)2
=

d

dx
(1 + x + x2 + · · · ) = 1 + 2x + 3x2 + 4x3
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Differentiate again to obtain the expansion of (1− x)−3:

Your solution
1

(1− x)3
=

1

2

d

dx

(
1

(1− x)2

)
=

1

2
[ ]

=

Answer
1

(1− x)3
=

1

2

d

dx

(
1

(1− x)2

)
=

1

2
[2 + 6x + 12x2 + 20x3 + · · · ] = 1+3x+6x2 +10x3 + · · ·

Finally state its radius of convergence:

Your solution

Answer
The final series: 1+3x+6x2 +10x3 + · · · has radius of convergence R = 1 since the original series

has this radius of convergence. This can also be found directly using the formula R = lim
n→∞

∣∣∣∣ bn

bn+1

∣∣∣∣
and using the fact that the coefficient of the nth term is bn =

1

2
n(n + 1).

4. The Taylor series
The Taylor series is a generalisation of the Maclaurin series being a power series developed in powers
of (x− x0) rather than in powers of x. Thus

Key Point 15

Taylor Series

If the function f(x) can be differentiated as often as required at x = x0 then:

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + · · ·

This is called the Taylor series of f(x) about the point x0.

The reader will see that the Maclaurin expansion is the Taylor expansion obtained if x0 is chosen to
be zero.
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Task

Obtain the Taylor series expansion of
1

1− x
about x = 2. (That is, find a power

series in powers of (x− 2).)

First, obtain the first three derivatives and the nth derivative of f(x) =
1

1− x
:

Your solution

f ′(x) = f ′′(x) = f ′′′(x) = f (n)(x) =

Answer

f ′(x) =
1

(1− x)2
, f ′′(x) =

2

(1− x)3
, f ′′′(x) =

6

(1− x)4
, · · · f (n)(x) =

n!

(1− x)n+1

Now evaluate these derivatives at x0 = 2:

Your solution

f ′(2) = f ′′(2) = f ′′′(2) = f (n)(2) =

Answer

f ′(2) = 1, f ′′(2) = −2, f ′′′(2) = 6, f (n)(2) = (−1)n+1n!

Hence, write down the Taylor expansion of f(x) =
1

1− x
about x = 2:

Your solution
1

1− x
=

Answer
1

1− x
= −1 + (x− 2)− (x− 2)2 + (x− 2)3 + · · ·+ (−1)n+1(x− 2)n + · · ·
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Exercises

1. Show that the series obtained in the last Task is convergent if |x− 2| < 1.

2. Sketch the linear, quadratic and cubic approximations to
1

1− x
obtained from the series in the

last task and compare to
1

1− x
.

Answer

2. In the following diagrams some of the terms from the Taylor series are plotted to compare with
1

(1− x)
.

y

x

y

x

y

x

1

1 − x

−1 + (x − 2)

−1 + (x − 2) − (x − 2)2

−1 + (x − 2) − (x − 2)2 + (x − 2)3

1 2

1

1 − x

1

1 − x

1 2

1 2
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