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Introduction
In the previous two Sections, surface integrals (or double integrals) were introduced i.e. functions
were integrated with respect to one variable and then with respect to another variable. It is often
useful in engineering to extend the process to an integration with respect to three variables i.e. a
volume integral or triple integral. Many of the processes and techniques involved in double integration
are relevant to triple integration.
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Prerequisites
Before starting this Section you should . . .

• have a thorough understanding of the various
techniques of integration

• be familiar with the concept of a function of
two variables

• have studied Sections 27.1 and 27.2 on
double integration

• be able to visualise or sketch a function in
three variables.�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• evaluate triple integrals
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1. Example of volume integral: mass of water in a reservoir
Sections 27.1 and 27.2 introduced an example showing how the force on a dam can be represented by
a double integral. Suppose, instead of the total force on the dam, an engineer wishes to find the total
mass of water in the reservoir behind the dam. The mass of a little element of water (dimensions δx
in length, δy in breadth and δz in height) with density ρ is given by ρδzδyδx (i.e. the mass of the
element is given by its density multiplied by its volume).

The density may vary at different parts of the reservoir e.g. due to temperature variations and
the water expanding at higher temperatures. It is important to realise that the density ρ may be a
function of all three variables, x, y and z. For example, during the spring months, the depths of the
reservoir may be at the cold temperatures of the winter while the parts of the reservoir nearer the
surface may be at higher temperatures representing the fact that they have been influenced by the
warmer air above; this represents the temperature varying with the vertical coordinate z. Also, the
parts of the reservoir near where streams flow in may be extremely cold as melting snow flows into
the reservoir. This represents the density varying with the horizontal coordinates x and y.

Thus the mass of a small element of water is given by ρ(x, y, z)δzδyδx The mass of water in a

column is given by the integral

∫ 0

−h(x,y)

ρ(x, y, z) dzδyδx where the level z = 0 represents the surface

of the reservoir and the function h(x, y) represents the depth of the reservoir for the particular values
of x and y under consideration. [Note that the depth is positive but as it is measured downwards, it
represents a negative value of z.]

The mass of water in a slice (aligned parallel to the x-axis) is given by integrating once more with

respect to y i.e.

∫ y2(x)

y1(x)

∫ 0

−h(x,y)

ρ(x, y, z) dzdyδx. Here the functions y1(x) and y2(x) represent the

extreme values of y for the value of x under consideration.

Finally the total mass of water in the reservoir can be found by integrating over all x i.e.∫ b

a

∫ y2(x)

y1(x)

∫ 0

−h(x,y)

ρ(x, y, z) dzdydx.

To find the total mass of water, it is necessary to integrate the density three times, firstly with
respect to z (between limits dependent on x and y), then with respect to y (between limits which
are functions of x) and finally with respect to x (between limits which are constant).

This is an example of a triple or volume integral.

2. Evaluating triple integrals
A triple integral is an integral of the form∫ b

a

∫ q(x)

p(x)

∫ s(x,y)

r(x,y)

f(x, y, z) dzdydx

The evaluation can be split into an “inner integral” (the integral with respect to z between limits
which are functions of x and y), an “intermediate integral” (the integration with respect to y between
limits which are functions of x) and an “outer integral” (the integration with respect to x between
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limits which are constants. Note that there is nothing special about the variable names x, y and z:
other variable names could have been used instead.

Triple integrals can be represented in different ways.

∫
V

f dV represents a triple integral where the

dV is replaced by dxdydz (or equivalent) and the limit of V on the integral is replaced by appropriate
limits on the three integrals.

Note that the integral

∫
V

dV (i.e. integrating the function f(x, y, z) = 1) gives the volume of the

relevant shape. Hence the alternative name of volume integral.
One special case is where the limits on all the integrals are constants (a constant is, of course, a
special case of a function). This represents an integral over a cuboidal region.

Example 16
Consider a cube V of side 1.

(a) Express the integral

∫
V

f dV (where f is any function of x, y and z) as a

triple integral.

(b) Hence evaluate

∫
V

(y2 + z2) dV

x

y

z

δV

1

1

1

z = 0

z = 1 y = 0
y = 1

x = 1

x = 0

Figure 23

Solution

(a) Consider a little element of length dx, width dy and height dz. Then δV (the volume of
the small element) is the product of these lengths dxdydz. The function is integrated three times.
The first integration represents the integral over the vertical strip from z = 0 to z = 1. The second
integration represents this strip sweeping across from y = 0 to y = 1 and is the integration over
the slice that is swept out by the strip. Finally the integration with respect to x represents this slice
sweeping from x = 0 to x = 1 and is the integration over the entire cube. The integral therefore
becomes∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) dzdydx
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Solution (contd.)

(b) In the particular case where the function is f(x, y, z) = y2 + z2, the integral becomes∫ 1

0

∫ 1

0

∫ 1

0

(y2 + z2) dzdydx

The inner integral is∫ 1

0

(y2 + z2) dz =

[
y2z +

1

3
z3

]1

z=0

= y2 × 1 +
1

3
× 1− y2 × 0− 1

3
× 0 = y2 +

1

3

This inner integral is now placed into the intermediate integral to give∫ 1

0

(y2 +
1

3
) dy =

[
1

3
y3 +

1

3
y

]1

y=0

=
1

3
× 13 +

1

3
× 1− 1

3
× 03 − 1

3
× 0 =

2

3

Finally, this intermediate integral can be placed into the outer integral to give∫ 1

0

2

3
dx =

[
2

3
x

]1

0

=
2

3
× 1− 2

3
× 0 =

2

3

Example 17
Evaluate

∫ 1

0

∫ 2

0

∫ 3

0

8xyz dzdydx. This represents an integral over the cuboid

given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3.

Solution

The inner integral is given by integrating the function with respect to z while keeping x and y
constant.∫ 3

0

8xyz dz =

[
4xyz2

]3

0

= 4xy × 9− 0 = 36xy

This result is now integrated with respect to y while keeping x constant:∫ 2

0

36xy dy =

[
18xy

]2

0

= 18x× 4− 0 = 72x

Finally, this result is integrated with respect to x:∫ 1

0

72x dx =

[
36x2

]1

0

= 36× 1− 0 = 36

Hence,

∫ 1

0

∫ 2

0

∫ 3

0

8xyz dzdydx = 36

More generally, the limits on the inner integral may be functions of the “intermediate” and “outer”
variables and the limits on the intermediate integral may be functions of the “outer” variable.
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Example 18

V is the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x+y+z = 4.
(see Figure 24).

x

y

z

z = 0

y = 4 − x

4

4

4

z = 4 − x − y

δV

Figure 24

(a) Express

∫
V

f(x, y, z) dV (where f is a function of x, y and z) as a

triple integral.

(b) Hence find

∫
V

x dV .

Solution

The tetrahedron is divided into a series of slices parallel to the yz-plane and each slice is divided
into a series of vertical strips. For each strip, the bottom is at z = 0 and the top is on the plane

x + y + z = 4 i.e. z = 4 − x − y. So the integral up each strip is given by

∫ 4−x−y

z=0

f(x, y, z) dz

and this (inner) integral will be a function of x and y.

This, in turn, is integrated over all strips which form the slice. For each value of x, one end of
the slice will be at y = 0 and the other end at y = 4 − x. So the integral over the slice is∫ 4−x

y=0

∫ 4−x−y

z=0

f(x, y, z) dzdy and this (intermediate) integral will be a function of x.

Finally, integration is carried out over x. The limits on x are x = 0 and x = 4. Thus the triple

integral is

∫ 4

x=0

∫ 4−x

y=0

∫ 4−x−y

z=0

f(x, y, z) dzdydx and this (outer) integral will be a constant.

Hence

∫
V

f(x, y, z) dV =

∫ 4

x=0

∫ 4−x

y=0

∫ 4−x−y

z=0

f(x, y, z) dzdydx.
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Solution (contd.)

In the case where f(x, y, z) = x, the integral becomes∫
V

f(x, y, z) dV =

∫ 4

x=0

∫ 4−x

y=0

∫ 4−x−y

z=0

x dzdydx

=

∫ 4

x=0

∫ 4−x

y=0

[
xz

]4−x−y

z=0

dydx

=

∫ 4

x=0

∫ 4−x

y=0

[(4− x− y)x− 0] dydx

=

∫ 4

x=0

∫ 4−x

y=0

[
4x− x2 − xy

]
dydx

=

∫ 4

x=0

[
4xy − x2y − 1

2
xy2

]4−x

y=0

dx

=

∫ 4

x=0

[
4x(4− x)− x2(4− x)− 1

2
x(4− x)2 − 0

]4−x

y=0

dx

=

∫ 4

x=0

[
16x− 4x2 − 4x2 + x3 − 8x + 4x2 − 1

2
x3

]
dx

=

∫ 4

x=0

[
8x− 4x2 +

1

2
x3

]
dx

=

[
4x2 − 4

3
x3 +

1

8
x4

]4

0

= 4× 42 − 4

3
× 43 +

1

8
× 44 − 0

= 64− 256

3
+ 32

=
192− 256 + 96

3

=
32

3

Key Point 7

Triple Integration

The procedure for carrying out a triple integral is very similar to that for a double integral except
that the procedure requires three stages rather than two.
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Example 19
Find the integral of x over the shape shown in Figure 25. It represents half (positive
x) of a cylinder centered at x = y = 0 with radius 1 and vertical extent from z = 0
to z = 1.

x

y

z

1

1

1

Figure 25

Solution

In terms of x, the shape goes from x = 0 to x = 1. For each value of x, y goes from −
√

1− x2 to√
1− x2. The variable z varies from z = 0 to z = 1. Hence the triple integral is

I =

∫ 1

x=0

∫ √
1−x2

y=−
√

1−x2

∫ 1

z=0

x dzdydx

=

∫ 1

x=0

∫ √
1−x2

y=−
√

1−x2

[
xz

]1

z=0

dydx =

∫ 1

x=0

∫ √
1−x2

y=−
√

1−x2

[x− 0] dydx =

∫ 1

x=0

∫ √
1−x2

y=−
√

1−x2

x dydx

=

∫ 1

x=0

[
xy

]√1−x2

y=−
√

1−x2

dx =

∫ 1

x=0

2x
√

1− x2 dx

This outer integral can be evaluated by means of the substitution U = 1 − x2 i.e. dU = −2x dx
and noting that U = 1 when x = 0 and U = 0 when x = 1 i.e.

I =

∫ 1

x=0

2x
√

1− x2 dx = −
∫ 0

1

U1/2dU =

∫ 1

0

U1/2dU =

[
2

3
U3/2

]1

0

=
2

3
− 0 =

2

3

It is important to note that the three integrations can be carried out in whatever order is most
convenient. The result does not depend on the order in which the integrals are carried out. However,
when the order of the integrations is changed, it is necessary to consider carefully what the limits
should be on each integration. Simply moving the limits from one integration to another will only
work in the case of integration over a cuboid (i.e. where all limits are constants).
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Key Point 8

Order of Integration for Triple Integrals

1. The three integrations can be carried out in whichever order is most convenient.

2. When changing the order of the integrations, it is important to reconsider the limits on each
integration; a diagram can often help.

Example 20
For the triangular prism in Figure 26, with ends given by the planes y = 0 and
y = 2 and remaining faces given by the planes x = 0, z = 0 and x + 4z = 4, find
the integral of x over the prism, by

(a) Integrating first with respect to z, then y and finally x, and

(b) Changing the order of the integrations to x first, then y, then z.

x

y

z
1

4

2

Figure 26

Solution

For every value of x and y, the vertical coordinate z varies from z = 0 to z = 1 − x/4. Hence
the limits on z are z = 0 and z = 1 − x/4. For every value of x, the limits on y are y = 0 to
y = 2. The limits on x are x = 0 and x = 4 (the limits on the figure). Hence the triple integral is∫ 4

0

∫ 2

0

∫ 1−x/4

0

x dzdydx which can be evaluated as follows

I =

∫ 4

0

∫ 2

0

∫ 1−x/4

0

x dzdydx =

∫ 4

0

∫ 2

0

[
xz

]1−x/4

0

dydx

=

∫ 4

0

∫ 2

0

[
x

(
1− x

4

)
− 0

]
dydx =

∫ 4

0

∫ 2

0

(
x− 1

4
x2

)
dydx

=

∫ 4

0

[(
x− 1

4
x2

)
y

]2

0

dx =

∫ 4

0

[(
x− 1

4
x2

)
× 2−

(
x− 1

4
x2

)
× 0

]
dx

=

∫ 4

0

(
2x− 1

2
x2

)
dx =

[
x2 − 1

6
x3

]4

0

= 42 − 1

6
× 43 − 0 = 16− 32

3
=

16

3
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Solution (contd.)

Now, if the order of the integrations is changed, it is necessary to re-derive the limits on the integrals.
For every combination of y and z, x varies between x = 0 (left) and x = 4− 4z (right). Hence the
limits on x are x = 0 and x = 4− 4z. The limits on y are y = 0 and y = 2 (for all z). The limits
of z are z = 0 (bottom) and z = 1 (top).

So the triple integral becomes

∫ 1

0

∫ 2

0

∫ 4−4z

0

x dxdydz which can be evaluated as follows

I =

∫ 1

0

∫ 2

0

∫ 4−4z

0

x dxdydz =

∫ 1

0

∫ 2

0

[
1

2
x2

]4−4z

0

dydz

=

∫ 1

0

∫ 2

0

[
1

2
(4− 4z)2

]
dydz =

∫ 1

0

∫ 2

0

(8− 16z + 8z2) dydz

=

∫ 1

0

[ (
8− 16z + 8z2

)
y

]2

0

dz = 2

∫ 1

0

(8− 16z + 8z2) dz

= 2

[
8z − 8z2 +

8

3
z3

]1

0

= 2

(
8− 8 +

8

3
− 0

)
=

16

3

Key Point 9

Limits of Integration

While for different orders of integration the integral will always evaluate to the same value, the limits
of integration will in general be different.

Task

Evaluate the triple integral:

∫ 2

0

∫ 3

0

∫ 2

0

x3y2z dxdydz

Your solution
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Answer
The inner integral is∫ 2

0

x3y2z dx =

[
1

4
x4y2z

]2

0

=
1

4
24y2z − 0 = 4y2z

This is put into the intermediate integral i.e.∫ 3

0

4y2z dy =

[
4

3
y3z

]3

0

=
4

3
33z − 0 = 36z

Finally, this is put in the outer integral to give

I =

∫ 2

0

36z dz =

[
18z2

]2

0

= 18× 22 − 0 = 72

Exercises

Evaluate the following triple integrals

1.

∫ 2

0

∫ x

0

∫ x+z

0

(x + y + z) dydzdx

2.

∫ 4

2

∫ 3

−1

∫ 2−x/2

x/2−2

(x + y) dzdydx

Answer

1. 14 2.
88

3

Task

Find the volume of the solid prism shown in the diagram below. Check that when
the order of integration is changed, the volume remains unaltered.

x

y

z

1

x = 3

y + z = 1

3

1
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Your solution

Answer

The volume is given by the triple integral

∫ ∫ ∫
dV .

Putting z on the outer integral, y on the intermediate integral and x on the inner integral,
the limits on z are z = 0 to z = 1. For each value of z, y varies from y = 0 (base) to y = 1 − z
on the sloping face. For each combination of y and z, x varies from x = 0 to x = 3. Thus, the
volume is given by

V =

∫ ∫ ∫
dV =

∫ 1

z=0

∫ 1−z

y=0

∫ 3

x=0

dxdydz

=

∫ 1

z=0

∫ 1−z

y=0

[
x

]3

0

dydz =

∫ 1

z=0

∫ 1−z

y=0

3 dydz

=

∫ 1

z=0

[
3y

]1−z

y=0

dz =

∫ 1

z=0

(3(1− z)− 0) dz =

∫ 1

z=0

(3− 3z) dz

=

[
3z − 3

2
z2

]1

0

= 3− 3

2
− (0− 0) =

3

2
= 1.5
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Answers continued

Now, the three integrations can be carried out in a different order. For example, with x on the outer
integral, z on the intermediate integral and y on the inner integral, the limits on x are x = 0 to
x = 3; for each value of x, z varies from z = 0 to z = 1 and for each combination of x and z, y
varies from y = 0 to y = 1− z. The volume is therefore given by

V =

∫ ∫ ∫
dV =

∫ 3

x=0

∫ 1

z=0

∫ 1−z

y=0

dydzdx

=

∫ 3

x=0

∫ 1

z=0

[
y

]1−z

y=0

dzdx

=

∫ 3

x=0

∫ 1

z=0

[1− z] dzdx

=

∫ 3

x=0

[
z − z2

2

]1

z=0

dx

=

∫ 3

x=0

[
1− 12

2
− 0

]
dx

=

∫ 3

x=0

1

2
dx

=
[x

2

]3

x=0
=

3

2
− 0 = 1.5

There are in all six ways (3!) to order the three integrations; each order gives the same answer of
1.5.

Exercise

Find the volume of the solid shown in the diagram below. Check that when the order of integration
is changed, the volume remains unaltered.

x

y

z

2
4

6

y = 4 − x2

z = 6

Answer

32
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3. Higher order integrals
A function may be integrated over four or more variables. For example, the integral∫ 1

w=0

∫ 1

x=0

∫ 1

y=0

∫ 1−x

z=0

(w + y) dzdydxdw

represents the function w + y being integrated over the variables w, x, y and z. This is an example
of a quadruple integral.
The methods of evaluating quadruple integrals are very similar to those for double and triple integrals.
Start the integration from the inside and gradually work outwards. Quintuple (five variable) and
higher-order integrals also exist and the techniques are similar.

Example 21
Evaluate the quadruple integral

∫ 1

w=0

∫ 1

x=0

∫ 1

y=0

∫ 1−x

z=0

(w + y) dzdydxdw.

Solution

The first integral, with respect to z gives∫ 1−x

0

(w + y) dz =

[
(w + y)z

]1−x

0

= (w + y)(1− x)− 0 = (w + y)(1− x).

The second integral, with respect to y gives∫ 1

0

(w+y)(1−x) dy =

[(
wy +

1

2
y2

)
(1− x)

]1

0

=

(
w +

1

2

)
(1−x)−0 =

(
w +

1

2

)
(1−x).

The third integral, with respect to x gives∫ 1

0

(
w +

1

2

)
(1−x) dx =

[(
w +

1

2

) (
x− x2

2

)]1

0

=

(
w +

1

2

)
1

2
−0 =

1

2

(
w +

1

2

)
=

1

2
w +

1

4
.

Finally, integrating with respect to w gives∫ 1

0

(
1

2
w +

1

4

)
dw =

[
1

4
w2 +

1

4
w

]1

0

=
1

4
+

1

4
− 0 =

1

2

Exercise

Evaluate the quadruple integral

∫ 1

0

∫ 1

−1

∫ 1

−1

∫ 1−y2

0

(x + y2) dzdydxdw.

Answer
8

15
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4. Applications of triple and higher integrals

The integral

∫ ∫ ∫
f(x, y, z) dzdydx (or

∫
V

f(x, y, z) dV ) may represent many physical quantities

depending on the function f(x, y, z) and the limits used.

Volume
The integral

∫
V

1 dV (i.e. the integral of the function f(x, y, z) = 1) with appropriate limits gives

the volume of the solid described by V . This is sometimes more convenient than finding the volume
by means of a double integral.

Mass
The integral

∫ ∫ ∫
ρ(x, y, z) dzdydx (or

∫
V

ρ(x, y, z) dV ), with appropriate limits, gives the mass

of the solid bounded by V .

Mass of water in a reservoir

The introduction to this Section concerned the mass of water in a reservoir. Imagine that the reservoir
is rectangular in profile and that the width along the dam (i.e. measured in the x direction) is 100 m.
Imagine also that the length of the reservoir (measured away from the dam i.e. in the y direction) is
400 m. The depth of the reservoir is given by 40− y/10 m i.e. the reservoir is 40 m deep along the
dam and the depth reduces to zero at the end away from the dam.

The density of the water can be approximated by ρ(z) = a − b × z where a = 998 kg m−3 and
b = 0.05 kg m−4. I.e. at the surface (z = 0) the water has density 998 kg m−3 (corresponding to
a temperature of 20◦C) while 40 m down i.e. z = −40, the water has a density of 1000 kg m−3

(corresponding to the lower temperature of 4◦C).

x

y

z

DAM

100

400

−40

Figure 27

The mass of water in the reservoir is given by the integral of the function ρ(z) = a − b × z. For
each value of x and y, the limits on z will be from y/10− 40 (bottom) to 0 (top). Limits on y will
be 0 to 400 m while the limits of x will be 0 to 100 m. The mass of water is therefore given by the
integral

M =

∫ 100

0

∫ 400

0

∫ 0

y/10−40

(a− bz) dzdydx
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which can be evaluated as follows

M =

∫ 100

0

∫ 400

0

∫ 0

y/10−40

(a− bz) dzdydx

=

∫ 100

0

∫ 400

0

[
az − b

2
z2

]0

y/10−40

dydx

=

∫ 100

0

∫ 400

0

[
0− a(y/10− 40) +

b

2
(y/10− 40)2

]
dydx

=

∫ 100

0

∫ 400

0

[
40a− a

10
y +

b

200
y2 − 4by + 800b

]
dydx

=

∫ 100

0

[
40ay − a

20
y2 +

b

600
y3 − 2by2 + 800by

]400

0

dx

=

∫ 100

0

[
16000a− 8000a +

320000

3
b− 320000b + 320000b

]
dx

=

∫ 100

0

[
8000a +

320000

3
b

]
dx

= 8× 105a +
3.2

3
× 107b = 7.984× 108 +

0.16

3
× 107 = 7.989× 108 kg

So the mass of water in the reservoir is 7.989× 108 kg.
Notes :

1. In practice, the profile of the reservoir would not be rectangular and the depth would not vary
so smoothly.

2. The variation of the density of water with height is only a minor factor so it would only be
taken into account when a very exact answer was required. Assuming that the water had a
uniform density of ρ = 998 kg m−3 would give a total mass of 7.984× 108 kg while assuming
a uniform density of ρ = 1000 kg m−3 gives a total mass of 8× 108 kg.

Centre of mass
The expressions for the centre of mass (x, y, z) of a solid of density ρ(x, y, z) are given below

x =

∫
ρ(x, y, z)x dV∫
ρ(x, y, z) dV

y =

∫
ρ(x, y, z)y dV∫
ρ(x, y, z) dV

z =

∫
ρ(x, y, z)z dV∫
ρ(x, y, z) dV

In the (fairly common) case where the density ρ does not vary with position and is constant, these
results simplify to

x =

∫
x dV∫
dV

y =

∫
y dV∫
dV

z =

∫
z dV∫
dV
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Example 22
A tetrahedron is enclosed by the planes x = 0, y = 0, z = 0 and x + y + z = 4.
Find (a) the volume of this tetrahedron, (b) the position of the centre of mass.

Solution

(a) Note that this tetrahedron was considered in Example 18, see Figure 24. It was shown that in

this case the volume integral

∫
V

f(x, y, z) dV becomes

∫ 4

x=0

∫ 4−x

y=0

∫ 4−x−y

z=0

f(x, y, z) dzdydx. The

volume is given by

V =

∫
V

dV =

∫ 4

x=0

∫ 4−x

y=0

∫ 4−x−y

z=0

dzdydx

=

∫ 4

x=0

∫ 4−x

y=0

[
z

]4−x−y

z=0

dydx

=

∫ 4

x=0

∫ 4−x

y=0

(4− x− y) dydx

=

∫ 4

x=0

[
4y − xy − 1

2
y2

]4−x

y=0

dx

=

∫ 4

x=0

[
8− 4x +

1

2
x2

]
dx

=

[
8x− 2x2 +

1

6
x3

]4

0

= 32− 32 +
64

6
=

32

3

Thus the volume of the tetrahedron is
32

3
≈ 10.3

(b) The x coordinate of the centre of mass i.e. x is given by x =

∫
x dV∫
dV

.

The denominator

∫
dV is the formula for the volume i.e.

32

3
while the numerator

∫
x dV was

calculated in an earlier Example to be
32

3
.

Thus x =

∫
x dV∫
dV

=
32/3

32/3
= 1.

By symmetry (or by evaluating relevant integrals), it can be shown that y = z = 1 i.e. the centre
of mass is at (1, 1, 1).
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Moment of inertia
The moment of inertia I of a particle of mass M about an axis PQ is defined as

I = Mass× Distance2 or I = Md2

where d is the perpendicular distance from the particle to the axis.
To find the moment of inertia of a larger object, it is necessary to carry out a volume integration
over all such particles. The distance of a particle at (x, y, z) from the z-axis is given by

√
x2 + y2

so the moment of inertia of an object about the z-axis is given by

Iz =

∫
V

ρ(x, y, z)(x2 + y2) dz

Similarly, the moments of inertia about the x-axis and y-axis are given by

Ix =

∫
V

ρ(x, y, z)(y2 + z2) dx and Iy =

∫
V

ρ(x, y, z)(x2 + z2) dy

In the case where the density is constant over the object, so ρ(x, y, z) = ρ, these formulae reduce to

Ix = ρ

∫
V

(y2 + z2) dx , Iy = ρ

∫
V

(x2 + z2) dy and Iz = ρ

∫
V

(x2 + y2) dz

When possible, the moment of inertia is expressed in terms of M , the mass of the object.

Example 23
Find the moment of inertia (about the x-axis) of the cube of side 1, mass M and
density ρ shown in Example 16, page 43.

Solution

For the cube,

Mass = Volume× Density i.e. M = 13 × ρ = ρ

The moment of inertia (about the x-axis) is given by

Ix = ρ

∫
V

(y2 + z2) dx = ρ

∫ 1

0

∫ 1

0

∫ 1

0

(y2 + z2) dzdydx

This integral was shown to equal
2

3
in Example 16. Thus

Ix =
2

3
ρ =

2

3
M

By applying symmetry, it can also be shown that the moments of inertia about the y- and z-axes

are also equal to
2

3
M .
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Engineering Example 2

Radioactive decay

Introduction

A cube of an impure radioactive ore is of side 10 cm. The number of radioactive decays taking
place per cubic metre per second is given by R = 1023(0.1 − z)e−t/1000. The dependence on time
represents a half-life of 693 seconds while the dependence on the vertical coordinate z represents
some gravitational stratification. The value z = 0 represents the bottom of the cube and z = 0.1
represents the top of the cube. (Note that the dimensions are in metres so 10 cm becomes 0.1 m.)

What is the total number of decays taking place over the cube in the 100 seconds between t = 0
and t = 100?

Solution

The total number of decays is given by the quadruple integral

N =

∫ 0.1

x=0

∫ 0.1

y=0

∫ 0.1

z=0

∫ 100

t=0

1023(0.1− z)e−t/1000dtdzdydx

which may be evaluated as follows

N =

∫ 0.1

x=0

∫ 0.1

y=0

∫ 0.1

z=0

∫ 100

t=0

1023(0.1− z)e−t/1000dtdzdydx

=

∫ 0.1

x=0

∫ 0.1

y=0

∫ 0.1

z=0

[
− 1000× 1023(0.1− z)e−t/1000

]100

t=0

dzdydx

=

∫ 0.1

x=0

∫ 0.1

y=0

∫ 0.1

z=0

[
1026(0.1− z)(1− e−0.1)

]
dzdydx

=

∫ 0.1

x=0

∫ 0.1

y=0

∫ 0.1

z=0

[
9.5× 1024(0.1− z)

]
dzdydx

= 9.5× 1024

∫ 0.1

x=0

∫ 0.1

y=0

[
(0.1z − 0.5z2)

]0.1

z=0

dydx

= 9.5× 1024

∫ 0.1

x=0

∫ 0.1

y=0

[0.005] dydx

= 0.005× 9.5× 1024

∫ 0.1

x=0

∫ 0.1

y=0

dydx

= 0.005× 9.5× 1024 × 0.1× 0.1 = 4.75× 1020

Thus the number of decays is approximately equal to 4.75× 1020
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Task

For the solid prism shown below (the subject of the Task on page 50) find

(a) the coordinates of the centre of mass

(b) the moment of inertia about the x- , y- and z-axes.

x

y

z

1

x = 3

y + z = 1

3

1

Your solution

(a)
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Answer
The x, y and z coordinates of the centre of mass of a solid of constant density are given on page
55 by

x =

∫
x dV∫
dV

y =

∫
y dV∫
dV

z =

∫
z dV∫
dV

For the triangular prism, the task on page 50 showed that the denominator

∫
dV has value 1.5.

The numerator of the expression for x is given by∫
x dV =

∫ 1

z=0

∫ 1−z

y=0

∫ 3

x=0

x dxdydz =

∫ 1

z=0

∫ 1−z

y=0

[
x2

2

]3

0

dydz =

∫ 1

z=0

∫ 1−z

y=0

9

2
dydz

=

∫ 1

z=0

[
9

2
y

]1−z

y=0

dz =

∫ 1

z=0

(
9

2
(1− z)− 0

)
dz =

∫ 1

z=0

(
9

2
− 9

2
z

)
dz

=

[
9

2
z − 9

4
z2

]1

0

=
9

2
− 9

4
− (0− 0) =

9

4
= 2.25

So, x =
2.25

1.5
= 1.5. By similar integration it can be shown that ȳ =

1

3
, z̄ =

1

3
.

Your solution

(b)
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Answer

The moment of inertia about the x−axis, Ix is given by Ix = ρ

∫
V

(y2 + z2) dV which for the solid

under consideration is given by

Ix = ρ

∫ 3

x=0

∫ 1

y=0

∫ 1−y

z=0

(y2 + z2) dzdydx = ρ

∫ 3

x=0

∫ 1

y=0

(
y2 − y3 +

(1− y)3

3

)
dydx

= ρ

∫ 3

x=0

1

6
dx =

1

2
ρ

Now, the mass M of the solid is given by M = ρ × Volume = 3
2
ρ (where the volume had been

calculated in a previous example) so

Ix =
1

2
ρ =

1

2
ρ× M

3
2
ρ

=
1

3
M

Similarly, the moment of inertia about the y−axis, Iy is given by Iy = ρ

∫
V

(x2 + z2) dV which for

the solid under consideration is given by

Ix = ρ

∫ 3

x=0

∫ 1

y=0

∫ 1−y

z=0

(x2 + z2) dzdydx = ρ

∫ 3

x=0

∫ 1

y=0

(
x2(1− y) +

(1− y)3

3

)
dydx

= ρ

∫ 3

x=0

(
1

2
x2 +

1

12

)
dx =

19

4
ρ

and so Iy =
19

4
ρ =

19

4
ρ× M

3
2
ρ

=
19

6
M . Finally, by symmetry, Iz = Iy =

19

6
M .

Exercise

For the solid shown below (the subject of the Task on page 47) find the centre of mass and the
moment of inertia about the x-, y- and z-axes.

x

y

z

2
4

6

y = 4 − x2

z = 6

Answer

(x̄, ȳ, z̄) = (0.75, 1.6, 3) Ix = 15.66M Iy = 12.8M Iz = 4.46M
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Task

A cube of side 2 is made of laminated material so that, with the origin at one
corner, the density of the material is kx.

(a) First find the mass M of the cube:

Your solution

Answer

The integrations over the cube are of the form

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

dV .

The mass M is given by

M =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

ρ dzdydx

=

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

kx dzdydx

=

∫ 2

x=0

∫ 2

y=0

2kx dydx =

∫ 2

x=0

4kx dx =

[
2kx2

]2

0

= 8k
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(b) Now find the position of the centre of mass of the cube:

Your solution

Answer

The x-coordinate of the centre of mass will be given by

∫
ρx dV

M
where the numerator is given by

∫
ρxdV =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

ρx dzdydx =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

kx2 dzdydx

=

∫ 2

x=0

∫ 2

y=0

2kx2 dydx =

∫ 2

x=0

4kx2 dx =

[
4

3
kx3

]2

0

=
32

3
k

So x =
32
3
k

8k
=

4

3
.

The y-coordinate of the centre of mass is given by

∫
ρy dV

M
where the numerator is given by

∫
ρydV =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

ρy dzdydx =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

kxy dzdydx

=

∫ 2

x=0

∫ 2

y=0

2kxy dydx =

∫ 2

x=0

4kx dx =

[
2kx2

]2

0

= 8k

So y =
8k

8k
= 1.

By symmetry (the density depends only on x), z = y = 1.

The coordinates of the centre of mass are (
4

3
, 1, 1).
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(c) Finally find the moments of inertia about the x-, y- and z-axes:

Your solution
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Answer
The moment of inertia about the x-axis is given by Ix =

∫
V

ρ (y2 + z2) dV (page 58). In this case,

Ix =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

kx(y2 + z2) dzdydx

=

∫ 2

x=0

∫ 2

y=0

[
kx(y2z +

1

3
z3)

]2

z=0

dydx =

∫ 2

x=0

∫ 2

y=0

kx(2y2 +
8

3
) dydx

=

∫ 2

x=0

[
kx(

2

3
y3 +

8

3
y)

]2

y=0

dx =

∫ 2

x=0

kx(
32

3
) dx

=

[
16

3
kx2

]2

0

=
64

3
k =

8

3
M

where the last step involves substituting that the mass M = 8k.

Similarly, the moment of inertia about the y-axis is given by Iy =
∫

V
ρ (x2 + z2) dV i.e.

Iy =

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

kx(x2 + z2) dzdydx

=

∫ 2

x=0

∫ 2

y=0

∫ 2

z=0

k(x3 + xz2) dzdydx =

∫ 2

x=0

∫ 2

y=0

[
k(x3z +

1

3
xz3)

]2

z=0

dydx

=

∫ 2

x=0

∫ 2

y=0

(
k(2x3 +

8

3
x)

)
dydx =

∫ 2

x=0

(
k(4x3 +

16

3
x)

)
dx

=

[
k(x4 +

8

3
x2)

]2

x=0

= k(16 +
32

3
) =

80

3
k =

10

3
M

By symmetry, Iz = Iy = 10
3
M .
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