The Binomial Series

🔌 Introduction

In this Section we examine an important example of an infinite series, the binomial series:

$$1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots$$

We show that this series is only convergent if |x| < 1 and that in this case the series sums to the value $(1+x)^p$. As a special case of the binomial series we consider the situation when p is a positive integer n. In this case the infinite series reduces to a **finite** series and we obtain, by replacing x with $\frac{b}{a}$, the **binomial theorem**:

$$(b+a)^n = b^n + nb^{n-1}a + \frac{n(n-1)}{2!}b^{n-2}a^2 + \dots + a^n.$$

Finally, we use the binomial series to obtain various polynomial expressions for $(1 + x)^p$ when x is 'small'.

	understand the factorial notation
Before starting this Section you should	 have knowledge of the ratio test for convergence of infinite series.
Defore starting this Section you should	 understand the use of inequalities
	• recognise and use the binomial series
Learning Outcomes	• state and use the binomial theorem
On completion you should be able to	 use the binomial series to obtain numerical approximations

1. The binomial series

A very important infinite series which occurs often in applications and in algebra has the form:

$$1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots$$

in which p is a given number and x is a variable. By using the ratio test it can be shown that this series converges, irrespective of the value of p, as long as |x| < 1. In fact, as we shall see in Section 16.5 the given series converges to the value $(1 + x)^p$ as long as |x| < 1.

The binomial theorem can be obtained directly from the binomial series if p is chosen to be a **positive** integer (here we need not demand that |x| < 1 as the series is now finite and so is always convergent irrespective of the value of x). For example, with p = 2 we obtain

$$(1+x)^2 = 1+2x+\frac{2(1)}{2}x^2+0+0+\cdots$$

= 1+2x+x² as is well known.

With p = 3 we get

$$(1+x)^3 = 1 + 3x + \frac{3(2)}{2}x^2 + \frac{3(2)(1)}{3!}x^3 + 0 + 0 + \cdots$$
$$= 1 + 3x + 3x^2 + x^3$$

Generally if p = n (a positive integer) then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + x^n$$

which is a form of the binomial theorem. If x is replaced by $\frac{b}{a}$ then

$$\left(1+\frac{b}{a}\right)^n = 1+n\left(\frac{b}{a}\right) + \frac{n(n-1)}{2!}\left(\frac{b}{a}\right)^2 + \dots + \left(\frac{b}{a}\right)^n$$

Now multiplying both sides by a^n we have the following Key Point:

The Binomial Theorem

If n is a positive integer then the expansion of (a + b) raised to the power n is given by:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \dots + b^n$$

This is known as the **binomial** theorem.

Use the binomial theorem to obtain (a) $(1+x)^7$ (b) $(a+b)^4$

(a) Here n = 7:

Your solution $(1+x)^7 =$

Answer

 $(1+x)^7 = 1 + 7x + 21x^2 + 35x^3 + 35x^4 + 21x^5 + 7x^6 + x^7$

(b) Here n = 4:

Your solution

 $(a+b)^4 =$

Answer

 $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$

Given that x is so small that powers of x^3 and above may be ignored in comparison to lower order terms, find a quadratic approximation of $(1 - x)^{\frac{1}{2}}$ and check for accuracy your approximation for x = 0.1.

First expand $(1-x)^{\frac{1}{2}}$ using the binomial series with $p = \frac{1}{2}$ and with x replaced by (-x):

Your solution $(1-x)^{\frac{1}{2}} =$

Answer

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})}{2}x^2 - \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{6}x^3 + \cdots$$

Now obtain the quadratic approximation:

Your solution $(1-x)^{\frac{1}{2}} \simeq$

Answer $(1-x)^{\frac{1}{2}} \simeq 1 - \frac{1}{2}x - \frac{1}{8}x^2$

Now check on the validity of the approximation by choosing x = 0.1:

Your solution

Answer

On the left-hand side we have

 $(0.9)^{\frac{1}{2}} = 0.94868$ to 5 d.p. obtained by calculator

whereas, using the quadratic expansion:

$$(0.9)^{\frac{1}{2}} \approx 1 - \frac{1}{2}(0.1) - \frac{1}{8}(0.1)^2 = 1 - 0.05 - (0.00125) = 0.94875.$$

so the error is only 0.00007.

What we have done in this last Task is to replace (or approximate) the function $(1-x)^{\frac{1}{2}}$ by the simpler (polynomial) function $1 - \frac{1}{2}x - \frac{1}{8}x^2$ which is reasonable provided x is very small. This approximation is well illustrated geometrically by drawing the curves $y = (1-x)^{\frac{1}{2}}$ and $y = 1 - \frac{1}{2}x - \frac{1}{8}x^2$. The two curves coincide when x is 'small'. See Figure 2:

Obtain a cubic approximation of $\frac{1}{(2+x)}$. Check your approximation for accuracy using appropriate values of x.

First write the term $\frac{1}{(2+x)}$ in a form suitable for the binomial series (refer to Key Point 9):

Your solution $\frac{1}{(2+x)} =$ Answer $\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)} = \frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}$

Now expand using the binomial series with p = -1 and $\frac{x}{2}$ instead of x, to include terms up to x^3 :

Answer

$$\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1} = \frac{1}{2}\left\{1+(-1)\frac{x}{2}+\frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^2+\frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^3\right\}$$
$$= \frac{1}{2}-\frac{x}{4}+\frac{x^2}{8}-\frac{x^3}{16}$$

State the range of x for which the binomial series of $\left(1+\frac{x}{2}\right)^{-1}$ is valid:

Your solution

The series is valid if

Answer

valid as long as $\left| \frac{x}{2} \right| < 1$ i.e. |x| < 2 or -2 < x < 2

Choose x = 0.1 to check the accuracy of your approximation:

Your solution	
$\frac{1}{2}\left(1+\frac{0.1}{2}\right)^{-1} =$	
$\frac{1}{2} - \frac{0.1}{4} + \frac{0.01}{8} - \frac{0.001}{16} =$	
Answer	
$\frac{1}{2}\left(1+\frac{0.1}{2}\right)^{-1} = 0.47619$ to 5 d.p.	
$\frac{1}{2} - \frac{0.1}{4} + \frac{0.01}{8} - \frac{0.001}{16} = 0.4761875.$	

Figure 3 below illustrates the close correspondence (when x is 'small') between the curves y =

Exercises

1. Determine the expansion of each of the following

(a)
$$(a+b)^3$$
, (b) $(1-x)^5$, (c) $(1+x^2)^{-1}$, (d) $(1-x)^{1/3}$

2. Obtain a cubic approximation (valid if x is small) of the function $(1 + 2x)^{3/2}$.

1. (a)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(b) $(1-x)^5 = 1 - 5x + 10x^2 - 10x^3 + 5x^4 - x^5$
(c) $(1+x^2)^{-1} = 1 - x^2 + x^4 - x^6 + \cdots$
(d) $(1-x)^{1/3} = 1 - \frac{1}{3}x - \frac{1}{9}x^2 - \frac{5}{81}x^3 + \cdots$
2. $(1+2x)^{3/2} = 1 + 3x + \frac{3}{2}x^2 - \frac{1}{2}x^3 + \cdots$