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Introduction
In this Section we introduce De Moivre’s theorem and examine some of its consequences. We shall
see that one of its uses is in obtaining relationships between trigonometric functions of multiple angles
(like sin 3x, cos 7x) and powers of trigonometric functions (like sin2 x, cos4 x). Another important
use of De Moivre’s theorem is in obtaining complex roots of polynomial equations. In this application
we re-examine our definition of the argument arg(z) of a complex number.
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Prerequisites
Before starting this Section you should . . .

• be familiar with the polar form of a complex
number

• be familiar with the Argand diagram

• be familiar with the trigonometric identity
cos2 θ + sin2 θ ≡ 1

• know how to expand (x + y)n when n is a
positive integer'
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Learning Outcomes
On completion you should be able to . . .

• employ De Moivre’s theorem in a number of
applications

• fully define the argument arg(z) of a complex
number

• obtain complex roots of complex numbers
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1. De Moivre’s theorem
We have seen, in Section 10.2 Key Point 7, that, in polar form, if z = r(cos θ + i sin θ) and
w = t(cos φ + i sin φ) then the product zw is:

zw = rt(cos(θ + φ) + i sin(θ + φ))

In particular, if r = 1, t = 1 and θ = φ (i.e. z = w = cos θ + i sin θ), we obtain

(cos θ + i sin θ)2 = cos 2θ + i sin 2θ

Multiplying each side of the above equation by cos θ + i sin θ gives

(cos θ + i sin θ)3 = (cos 2θ + i sin 2θ)(cos θ + i sin θ) = cos 3θ + i sin 3θ

on adding the arguments of the terms in the product.
Similarly

(cos θ + i sin θ)4 = cos 4θ + i sin 4θ.

After completing p such products we have:

(cos θ + i sin θ)p = cos pθ + i sin pθ

where p is a positive integer.
In fact this result can be shown to be true for those cases in which p is a negative integer and even
when p is a rational number e.g. p = 1

2
.

Key Point 12

If p is a rational number:

(cos θ + i sin θ)p ≡ cos pθ + i sin pθ

This result is known as De Moivre’s theorem.

Recalling from Key Point 8 that cos θ + i sin θ = eiθ, De Moivre’s theorem is simply a statement of
the laws of indices:

(eiθ)p = eipθ

2. De Moivre’s theorem and root finding
In this subsection we ask if we can obtain fractional powers of complex numbers; for example what
are the values of 81/3 or (−24)1/4 or even (1 + i)1/2?
More precisely, for these three examples, we are asking for those values of z which satisfy

z3 − 8 = 0 or z4 + 24 = 0 or z2 − (1 + i) = 0
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Each of these problems involve finding roots of a complex number.
To solve problems such as these we shall need to be more careful with our interpretation of arg(z)
for a given complex number z.

Arg(zzz) revisited
By definition arg(z) is the angle made by the line representing z with the positive x-axis. See Figure
9(a). However, as the Figure 9(b) shows you can increase θ by 2π (or 3600) and still obtain the same
line in the xy plane. In general, as indicated in Figure 9(c) any integer multiple of 2π can be added
to or subtracted from arg(z) without affecting the Cartesian form of the complex number.
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Figure 9

Key Point 13

arg(z) is unique only up to an integer multiple of 2π radians

For example:

z = 1 + i =
√

2(cos
π

4
+ i sin

π

4
) in polar form

However, we could also write, equivalently:

z = 1 + i =
√

2(cos(
π

4
+ 2π) + i sin(

π

4
+ 2π))

or, in full generality:

z = 1 + i =
√

2(cos(
π

4
+ 2kπ) + i sin(

π

4
+ 2kπ)) k = 0,±1,±2, · · ·

This last expression shows that in the polar form of a complex number the argument of z, arg(z),
can assume infinitely many different values, each one differing by an integer multiple of 2π. This is
nothing more than a consequence of the well-known properties of the trigonometric functions:

cos(θ + 2kπ) ≡ cos θ, sin(θ + 2kπ) ≡ sin θ for any integer k

We shall now show how we can use this more general interpretation of arg(z) in the process of finding
roots.
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Example 8
Find all the values of 81/3.

Solution

Solving z = 81/3 for z is equivalent to solving the cubic equation z3 − 8 = 0. We expect that there
are three possible values of z satisfying this cubic equation. Thus, rearranging: z3 = 8. Now write
the right-hand side as a complex number in polar form:

z3 = 8(cos 0 + i sin 0)

(i.e. r = |8| = 8 and arg(8) = 0). However, if we now generalise our expression for the argument,
by adding an arbitrary integer multiple of 2π, we obtain the modified expression:

z3 = 8(cos(2kπ) + i sin(2kπ)) k = 0,±1,±2, · · ·

Now take the cube root of both sides:

z =
3
√

8(cos(2kπ) + i sin(2kπ))
1
3

=
3
√

8(cos
2kπ

3
+ i sin

2kπ

3
) using De Moivre’s theorem.

Now in this expression k can take any integer value or zero. The normal procedure is to take three
consecutive values of k (say k = 0, 1, 2). Any other value of k chosen will lead to a root (a value
of z) which repeats one of the three already determined.

So if k = 0 z0 = 2(cos 0 + i sin 0) = 2

k = 1 z1 = 2(cos
2π

3
+ i sin

2π

3
) = −1 + i

√
3

k = 2 z2 = 2(cos
4π

3
+ i sin

4π

3
) = −1− i

√
3

These are the three (complex) values of 8
1
3 . The reader should verify, by direct multiplication, that

(−1 + i
√

3)3 = 8 and that (−1− i
√

3)3 = 8.

The reader may have noticed within this Example a subtle change in notation. When, for example,
we write 81/3 then we are expecting three possible values, as calculated above. However, when we
write 3

√
8 then we are only expecting one value: that delivered by your calculator.

Note the two complex roots are complex conjugates (since z3−8 = 0 is a polynomial equation with
real coefficients).
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In Example 8 we have worked with the polar form. Precisely the same calculation can be carried
through using the exponential form of a complex number. We take this opportunity to repeat this
calculation but working exclusively in exponential form.

Thus

z3 = 8

= 8ei(0) (i.e. r = |8| = 8 and arg(8) = 0)

= 8ei(2kπ) k = 0,±1,±2, · · ·

therefore taking cube roots

z =
3
√

8
[
ei(2kπ)

] 1
3

=
3
√

8e
i2kπ

3 using De Moivre’s theorem.

Again k can take any integer value or zero. Any three consecutive values will give the roots.

So if k = 0 z0 = 2ei0 = 2

k = 1 z1 = 2e
i2π
3 = −1 + i

√
3

k = 2 z2 = 2e
i4π
3 = −1− i

√
3

These are the three (complex) values of 8
1
3 obtained using the exponential form. Of course at the

end of the calculation we have converted back to standard Cartesian form.

Task

Following the procedure outlined in Example 8 obtain the two complex values of
(1 + i)1/2.

Begin by obtaining the polar form (using the general form of the argument) of (1 + i):

Your solution

Answer

You should obtain 1 + i =
√

2(cos(
π

4
+ 2kπ) + i sin(

π

4
+ 2kπ)) k = 0,±1,±2, · · ·.

Now take the square root and use De Moivre’s theorem to complete the solution:

Your solution
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Answer
You should obtain

z1 =
4
√

2(cos
π

8
+ i sin

π

8
) = 1.099 + 0.455i

z2 =
4
√

2(cos(
π

8
+ π) + i sin(

π

8
+ π)) = −1.099− 0.455i

A good exercise would be to repeat the calculation using the exponential form.

Exercise

Find all those values of z which satisfy z4 + 1 = 0. Write your values in standard Cartesian form.

Answer

z0 =
1√
2

+
i√
2

z1 = − 1√
2

+
i√
2

z2 = − 1√
2
− i√

2
z3 =

1√
2
− i√

2
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