
Differentiation of xn
.

In this unit we derive the result, from first principles, that if y = xn then
dy

dx
= nxn−1.

The result is then illustrated with several examples.

In order to master the techniques explained here it is vital that you undertake plenty of practice
exercises so that they become second nature.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

• differentiate y = xn, when n is a positive integer, from first principles.

• use the result to differentiate a variety of functions of this form.
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1. Introduction
In this unit we look at how to differentiate the function y = xn from first principles. The number
n can be a positive integer, a negative integer, a fraction or even zero. We start by considering
cases in which n is a positive integer as in the functions x2, x7 and so on.

2. Differentiation of y = xn when n is a positive integer
Recall the definition of the derivative of a function y = f(x).

dy

dx
= lim

δx→0

f(x + δx) − f(x)

δx

We apply this definition to the function y = xn.

We have
f(x) = xn

and so
f(x + δx) = (x + δx)n

In order to expand this we make use of the binomial theorem in the following form:

(a + b)n = an + nan−1b + . . . + bn

(You may wish to refer to the unit on Pascal’s triangle and the binomial theorem to revise this
if necessary.) Applying the binomial theorem to (x + δx)n we find

(x + δx)n = xn + nxn−1δx + . . . + (δx)n

Then, from the formula for the derivative

dy

dx
= lim

δx→0

xn + nxn−1δx + . . . + (δx)n − xn

δx

= lim
δx→0

nxn−1δx + . . . + (δx)n

δx

= lim
δx→0

(δx)(nxn−1 + . . . + (δx)n−1)

δx
= lim

δx→0

nxn−1 + . . . + (δx)n−1

Note that all the terms on the right, apart from the first, contain the term δx. In the limit as
δx tends to zero, all these become zero. We are left with the result that

dy

dx
= nxn−1

Key Point

When n is a positive integer,

if y = xn then
dy

dx
= nxn−1
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We have proved the result for the case when n is a positive integer. In fact, the result is true
when n is a negative integer and when n is a fraction although we will not prove this here.
Nevertheless we will use the result in the following examples.

Example

Suppose we want to differentiate y = x
1

2 .

We use the result with n = 1

2
.

dy

dx
=

1

2
x

1

2
−1 =

1

2
x−

1

2

Example

Suppose we want to differentiate y = x−1.

We use the result with n = −1.

dy

dx
= −1x−1−1 = −x−2

Example

Suppose we want to differentiate y = x2.

We use the result with n = 2.
dy

dx
= 2x2−1 = 2x1 = 2x

Example

Suppose we want to differentiate y = x7.

We use the result with n = 7.
dy

dx
= 7x7−1 = 7x6

Example

Suppose we want to differentiate y = x.

Note that x = x1 and so we use the result with n = 1.

dy

dx
= 1x1−1 = 1x0 = 1

We obtain the result that the derivative of y = x is simply 1, as we would expect since y = x is
the equation of a straight line with gradient 1.

What happens when n = 0 ?

Example

When n = 0 we are interested in the function y = x0. Applying the result obtained above we
find

dy

dx
= 0 × x0−1 = 0

So the derivative of y = x0 is zero. Note also that x0 = 1 and so we are really considering the
constant function y = 1. Because the graph of this function is a horizontal straight line the
result that its derivative is zero should come as no surprise.
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Exercise 1

Find the derivative of each of the following:

a) x6 b) x10 c) x4 d) x12

e) x−2 f) x−8 g) x−5 h) x−234

i) x13/2 j) x7/4 k) x3/5 l) x2/3

m)
1

x4
n)

√
x o) x−3/2 p) x−1/5

3. Some examples requiring the linearity rules

We now look at some more examples which assume that you already know the following rules:
if

y = f(x) ± g(x)

then
dy

dx
=

df

dx
± dg

dx

This means that we can differentiate sums (and differences) of functions, term by term.
Also, if

y = kf(x) where k is a constant

then
dy

dx
= k

df

dx

This means that we can differentiate a constant multiple of a function, simply by differentiating
the function and multiplying by the constant.

Together with rules are known as linearity rules.

Example

Suppose we want to differentiate y = 6x3 − 12x4 + 5.

We find
dy

dx
= 6(3x2) − 12(4x3) + 0 = 18x2 − 48x3.

Example

Suppose we want to differentiate y = x − 5x5 + 6x7 + 25.

By now, you should be getting sufficiently confident to condense several of the stages involved.
For example, when differentiating 6x7 you should recognise that the derivative of x7 is 7x6 and
so write down the derivative of 6x7 immediately, as 42x6:

We find
dy

dx
= 1 − 25x4 + 42x6.

Example

Suppose we want to differentiate: y = 1

x
+ 6x − 4x3/2 + 8.

Recall that 1

x
= x−1.
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We find
dy

dx
= −x−2 + 6 − 6x1/2

Example

Suppose we want to differentiate y = 4x1/3 − 5x + 6/x3.

Recall that 1

x3 = x−3.

We find
dy

dx
=

4

3
x−2/3 − 5 − 18x−4

Exercise 2

Find the derivative of each of the following:

a) 5x2 b) 8x6 c) 3x−2 d) 4x−3/5

e) x6 + x8 f) x10 + 1 g) x−3 + x h) 5 + x9/2

i) 12x3 − 3x2 j) 5x + 3x−2 k) 6x2 + 3x3/4 l) 7x−3 − 9x

m) 4x1/4 − 3x−1/3 n) 2 + 7x6 o) 3x − 4x−1/2 p)
2

x
− 3

x2

Answers

Exercise 1

a) 6x5 b) 10x9 c) 4x3 d) 12x11 e) −2x−3 f) −8x−9

g) −5x−6 h) −234x−235 i)
13

2
x11/2 j)

7

4
x3/4 k)

3

5
x−2/5 l)

2

3
x−1/3

m) −4x−5 = − 4

x5
n)

1

2
x−1/2 o) −3

2
x−5/2 p) −1

5
x−6/5

Exercise 2

a) 10x b) 48x5 c) −6x−3 d) −12

5
x−8/5 e) 6x5 + 8x7 f) 10x9

g) −3x−4 + 1 h)
9

2
x7/2 i) 36x2 − 6x j) 5 − 6x−3 k) 12x +

9

4
x−1/4 l) −21x−4 − 9

m) x−3/4 + x−4/3 n) 42x5 o) 3 + 2x−3/2 p) −2x−2 + 6x−3 = − 2

x2
+

6

x3
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