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 Many statistical tests require the dependent (response) variable (y) to be continuous so a different set of tests are 

needed when the dependent variable is categorical.  One of the most commonly used tests for categorical variables 

is the Chi-squared test which looks at whether or not there is a relationship between two categorical variables but 

this doesn’t make an allowance for the potential influence of other explanatory (independent) variables on that 

relationship.  For continuous outcome variables, multiple regression can be used for 

a) controlling for other explanatory variables when assessing relationships between a dependent variable and 

several independent variables 

b) predicting outcomes of a dependent variable using a linear combination of explanatory (independent) 

variables 

Logistic regression does the same but the outcome variable (y) is binary and leads to a model which can predict the 

probability of the binary event happening for an individual. 

Titanic example: On April 14th 1912 the Titianic sank.  Only 705 passengers and crew out of the 2228 on board 

survived.  Information on 1309 of those on board will be used to demonstrate logistic regression.  The data can be 

downloaded from biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls 

Research Question: Using the information on the 1309 people on board the titanic, which factors are most 

important in the survival of the person on board? 

The key variables of interest are: 

- Dependent variable: Survival - whether a passenger survived (1) or not (0). 

- Possible explanatory variables: Age, gender (recode so that sex = 1 for females and 0 for males), class (pclass = 1, 

2 or 3), number of accompanying parents/ children (parch) and number of accompanying siblings/ spouses 

(sibsp) 

  

The maths:  

For multiple regression a model of the following form can be used to predict the value of a response variable y 

using the values of a number of explanatory variables: 
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The regression process finds the coefficients which minimise the squared differences between the observed 

and expected values of y (minimising the residuals).  As the outcome of logistic regression is binary, y needs to 

be transformed so that the regression process can be used.  The logit transformation gives the following: 

ratio odds
p-1

p
     attack,heart  following diesperson  e.g. occuringevent  of probabilty

.....
1

ln 22110














p

xxx
p

p
qq

 

If probabilities of the event of interest happening for individuals are needed, the logistic regression equation 

can be written as: 
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Initial analysis 

The titanic data will be used to fit a logistic regression model.  Firstly the data needs to be downloaded and saved as 
a comma separated file (.csv), although R can also read Minitab, SPSS and Excel files. To read into R: 
> titanic_data <- read.csv("C:/... /titanic_data.csv") 

> attach(titanic_data) 

To check the variables, use structure function 
> str(titanic_data) 

'data.frame':   1309 obs. of 20 variables: 

 $ pclass      : int  1 1 1 1 1 1 1 1 1 1 ... 

 $ survived    : int  0 0 0 0 0 0 0 0 0 0 ... 

 $ name        : Factor w/ 1307 levels "Abbing, Mr. Anthony",..: 47 55 98 104 125 131 135 152  

... 

Then, declare the categorical explanatory variables as factors (R automatically treats numerical values as integers).   
> pclass.f <- factor(titanic_data$pclass) 

> Gender.f <- factor(Gender) 

Most of the variables can be investigated using table(...,titanic_data$survived).  Another reason for the cross 

tabulation is to identify categories with small frequencies as this can cause problems with the logistic regression 

procedure.  The number of accompanying parents/ children (parch) and number of accompanying siblings/ spouses 

(sibsp) were used to create a new binary variable indicating whether or not the person was travelling alone or with 

family (1 = travelling with family, 0 = travelling alone).   To create a new binary variable alone use the following 

commands.    
alone<-rep(0,1309) # Initialise the variable alone 

for (i in 1:1309) { 

   if ((parch[i]>0) | (sibsp[i]>0)) 

    alone[i]<-1 

} 

Then, declare it as a factor 
alone.f=factor(alone) 

When tested separately, Chi-squared tests concluded that there was evidence of a relationship between survival and 

gender, class and whether an individual was travelling alone.   
> chisq.test(survived,pclass) 

        Pearson's Chi-squared test 

data:  survived and pclass  

X-squared = 127.8592, df = 2, p-value < 2.2e-16 

> chisq.test(survived,sex) 

        Pearson's Chi-squared test with Yates' continuity correction 

data:  survived and sex  

X-squared = 363.6179, df = 1, p-value < 2.2e-16 

> chisq.test(survived,alone) 

        Pearson's Chi-squared test with Yates' continuity correction 

data:  survived and alone  

X-squared = 52.4183, df = 1, p-value = 4.485e-13 

Looking at the percentages of survival, it’s clear that women, those in first class and those not travelling alone were 

much more likely to survive.   

 Male Female 1st class 2nd Class 3rd class Travelling 
alone 

Travelling with family 

% surviving 19.1% 72.7% 61.9% 43% 25.5% 30.3% 50.3% 

 

Logistic regression 

Logistic regression will initially be carried out using these three variables.  Stage 1 of the following analysis will relate 

to using logistic regression to control for other variables when assessing relationships and stage 2 will look at 

producing a good model to predict from. 

In R the command for logistic regression is  glm (y~ x1 + x2 +..., data = dataset,  family = 
binomial). 
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Treatment of categorical explanatory variables 

When interpreting the output for logistic regression, it is important that binary variables are coded as 0 and 1.  Also, 

categorical variables with three or more categories need to be recoded as dummy variables with 0/ 1 outcomes e.g. 

class needs to appear as two variables 1st/ not 1st with 1 = yes and 2nd/ not 2nd with 1 = yes.  Luckily R does this for 

you, but the variables need to be declared as factors. To do this use var1.f <- factor(var1) 

 
Interpretation of the output  
Fit a logistic model to the response variable survived (y) and using the explanatory variables (xi) p.class, Alone and 
Gender. The indicator function - I()-  is used to define the reference category .   
> model1=glm (survived ~ I(pclass.f==1)+ I(pclass.f==2) + I(Gender.f==1) + I(Alone.f==1), data = 

titanic_data,  family = binomial) 

summary(model1) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.1317  -0.6825  -0.4649   0.6968   2.1347   

Coefficients: 

                     Estimate Std. Error z value Pr(>|z|)     

(Intercept)           -2.1703     0.1332 -16.296  < 2e-16 *** 

I(pclass.f == 1)TRUE   1.7034     0.1724   9.882  < 2e-16 *** 

I(pclass.f == 2)TRUE   0.8319     0.1779   4.676 2.93e-06 *** 

I(Gender.f == 1)TRUE   2.4743     0.1510  16.384  < 2e-16 *** 

I(Alone.f == 1)TRUE    0.1560     0.1462   1.067    0.286     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1741.0  on 1308  degrees of freedom 

Residual deviance: 1256.1  on 1304  degrees of freedom                   AIC: 1266.1 

The output gives the coefficients for the parameters, the null deviance and the residual deviance. 

To check whether the variables affect the response the significance of the coefficients (Pr(>|z|))can be used.  The p-
values are all below 0.05 apart from the test for the variable Alone (p = 0.286).  This means that although the Chi-
squared test for Survival vs. Alone was significant, once the other variables were controlled for, there is not a strong 
enough relationship between Alone and survival.  Class is tested as a whole (pclass) and then 1st and 2nd class 
compared to the reference category 3rd class.  When interpreting the differences, it is easier to look at look at the 

 iexp which represents the odds ratio for the individual variable: 

> exp(model1$coeff) 

    (Intercept)   I(pclass.f == 1)TRUE    I(pclass.f == 2)TRUE  I(Gender.f == 1)TRUE  I(Alone.f == 1)TRUE  

      0.1141392     5.4927193               2.2976664              11.8728634            1.1688321 

 For example, those in 1st class were 5.49 times more likely to survive than those in first class.   With gender, the 
odds ratio compares the likelihood of a male surviving in comparison to females.  The odds for women are a lot 
higher than for men (11.87 times that of women).  Alternatively, the odds of a male surviving over a female using 
1/11.87 = 0.084.  Females were 11.9 times more likely to survive. Similarly, those travelling with company were 1.2 
times more likely to survive. 
 Although this model does not include negative coefficients, a negative coefficient means that the odds of survival 
decreases.   
The log odds can be obtained: 
> predict(model1) 

And the odd ratios 
> fitted.values(model1)      

> predict(model1,type="response") 

The full model can be written as
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To check how the fitted values of our model match the response variable survived: 
> table(survived,predict(model1)>0) 

 survived FALSE TRUE 

       0   682  127 

       1   161  339 

> (682+339)/1309 

[1] 0.7799847 

This means that 78% of the fitted values are correctly classified.  
 
We compare this with the null model which has no explanatory variables (only includes a constant) such that each 
person has the same chance of survival.   
model0=glm (survived ~ NULL, data = titanic_data,  family = binomial) 

> model0 

 

Coefficients: 

(Intercept)     -0.4812   

 

Degrees of Freedom: 1308 Total (i.e. Null);  1308 Residual 

Null Deviance:      1741  

Residual Deviance: 1741         AIC: 1743 

To check how well the null model fits the data: 
> table(survived,predict(model0)>0) 

 survived FALSE 

       0   809 

       1   500 

> 809/1309 

 [1] 0.618029 

62% of the fitted values are correctly classified, an improvement of 16.2% on the classification. 
 
How good is the model? 
In standard regression, the coefficient of determination (R2) gives an indication of how much variation in y is 
explained by the model.  This cannot be calculated for logistic regression, to check the suitability of the model, the 
deviance, also called G2 (which corresponds to -2*log-likelihood) is used. A small value of G2 is preferable.  Also a 
comparison between the deviance for the null model and the full model can be used; this is sometimes called a G2 
test for goodness of fit.  This involves comparing to difference of the residual deviances with the difference in 
number of degrees of freedom using a chi-squared distribution.   
> pchisq(1741.0-1256.1  ,1308-1304) 

[1] 1 

A large p-value means that the full model is an improvement on the null model. 
 
The deviance can also be used to compare models, for example if the following model is used: 
> model2=glm (survived ~ I(pclass.f==1)+ I(pclass.f==2) +I(Gender.f==1), data = titanic_data,  family = 

binomial) 

To test which model is better: 
> anova(model2,model1,test="Chi") 

Analysis of Deviance Table 

 

Model 1: survived ~ I(pclass.f == 1) + I(pclass.f == 2) + I(Gender.f ==  1) 

Model 2: survived ~ I(pclass.f == 1) + I(pclass.f == 2) + I(Gender.f ==  1) + I(Alone.f == 1) 

  Resid. Df  Resid. Dev   Df  Deviance P(>|Chi|) 

1      1305     1257.2                       

2      1304     1256.1   1    1.1322    0.2873 

This means that the variable Alone is not needed in the model as P(>|Chi|) is greater than 0.05. 

The null model is written as 481.0
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