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Functions of a complex variable

Derivative: If w = f(z) where 2z and w are complex

dw

numbers, the derivative S2 at zq is

dz

Fz0) = lim | L= f(z0) (z")]

z—zp Z =2

provided that the limit exists as z — zy along any path.
If f(z) has a derivative at a point zp and at all points
in some neighbourhood of zy then f(z) is said to be
analytic at zg. If f(z) is analytic at all points in an
(open) region R then f(z) is said to be analytic in R.
Cauchy-Riemann equations: If z = x + jy and w =
f(z) = ulz,y) + jv(z,y) where z, y, u and v are real
variables, and f(z) is analytic in some region R of the
z plane, then the Cauchy-Riemann equations hold
throughout R:

du v du v

dr Ay dy Oz
If these partial derivatives are continuous within R, the
Cauchy-Riemann equations are sufficient conditions to
ensure f(z) is analytic. Furthermore, f'(z) = %—i—%g—:’
Singularities: If f(z) fails to be analytic at a point zg
but is analytic at some point in every neighbourhood of
zp then zp is called a singular point of f(z).
Laurent series: If f(z) is analytic on concentric circles
C4 and Cs of radii 1 and ra2, centred at zp, and also
analytic throughout the annular region between the cir-
cles, then for each point z within the annulus, f(z) may

be represented by the Laurent series
o0

f(z) = Z en(z — z0)"
in which ¢, are (:omplg)? constants. The series may be
written -1 oo
f(z) = Z enl(z—20)" + Z enlz — 20)".
=00 =0
Poles: The first sum on the right is the principal
part. If there are only a finite number of terms in the
principal part e.g.
fz) = Com L _C
“ o (z — 2(})”‘ o (Z — 2[])
+eot+ei(z—z0)+...+emlz—20)" +...
in which ¢_,, # 0, then f(z) has a singularity called a
pole of order m at z = z5. A pole of order 1 is called
a simple pole. If there are infinitely many terms in
the principal part, zp is called an isolated essential
singularity. If the principal part is zero, then f(z) has
a removable singularity at z = zp and the Laurent
series reduces to a Taylor series.
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Residues: If f(z) has a pole at z = z; then the coef-
ficient, ¢, of :+:, in the Laurent expansion is called
the residue of f (zj at z = zp. The residue at a pole of
order m is given by:

: q=t m
(m i 1)! o { dzm-1 [(z = 20) f(z)]} :

When evaluating the integrals which follow, the curve C'
is traversed in an anticlockwise sense.

Cauchy’s theorem: If f(z) is analytic within and on a
simple closed curve C' then tﬁ( f(z)dz=0.

Cauchy’s integral formula: If f(z) is analytic within
and on a simple closed curve C, and if z; is any point
within C' then

( o Ezz)udz = 275 f(za).

f —f(z} dz = @f["'j(zu}.
C

» (2 — zo)"H! n!

Further

The residue theorem: If f(z) is analytic within and on
a simple closed curve C apart from a finite number of
poles inside €, then

f flz)dz = 2mj x [ sum of residues
c

of f(z) at the poles inside C].

Eigenvalues & Eigenvectors
An eigenvector of a square matrix A is a non-zero col-
umn vector X such that AX = A X where A, (a scalar),
is the corresponding eigenvalue. The eigenvalues are
found by solving the characteristic equation

det(A — AI) = 0.

An n x n symmetric matrix A with real elements has
only real eigenvalues and n independent eigenvectors.
The eigenvectors corresponding to distinct eigenvalues
of a real symmetric matrix are orthogonal.

The modal matrix corresponding to the n X n square
matrix A is an n X n square matrix P whose columns
are the eigenvectors of A. If n independent eigenvectors
are used to form P then P 'AP is a diagonal matrix
in which the diagonal entries are the eigenvalues of A
taken in the same order that the eigenvectors were taken
to form P.
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Fourier Series
Fourier series:
If f(t) is periodic with period T its Fourier series is given
by

ft) = %} + Z (a,, cos QT;Nt + b, sin Q?Nt)

n=1

or equivalently, if w = 27 /T,

ft) = — 9+ Z a, cos nwt + by, sin nwt).

n=1

a, and b, are called the Fourier coefficients, given by

d+T
an——f @dt forn=0,1,2,3...

:1+;
= —f si gm-tdt, forn=1,2,3...

where d can be chosen to have any value.
If f(t) is odd, an =0 and f(t) = > | basinnwt.

If f(t) iseven, b, = 0 and f(t) = L+ 77 | ancosnwt.
Parseval’s theorem:

%./D'r(f(t))z au + Z(a’n + bﬁ

n=1

Complex form:
> . ’1"‘/2
f(t) = Z cped 2Tt T = _/ —J2mrfﬂ dt.
=—0o

Half-range sine series: Given f(t) for 0 < ¢t < I, its
odd periodic extension has period T" and Fourier series
given by

o0

t) = Z by, sin 2?#

n=1

4 (T2 2nwt
b":f-/o f(t)sin T,?' dt forn=1,2,3...
Half-range cosine series: Given f(t) for 0 <t < 7—2", its
even periodic extension has period T and Fourier series
given by

_ o = 2nwt
ft) =3+ ancos =

n=1

T/2 .
an = %L f(t) cos QE:t(lt forn=20,1,2,3...

The Laplace transform
The Laplace transform of f(t) is F(s) defined by

F(S)Zﬁ{f(t)}Z_/o T et f (.

function f(t),t = 0 Laplace transform F(s)
t" HFT":'I
e{lr .‘llﬂ.

n_—at n!
t"e W
sin bt el
cos bt ;Qﬁg
sinh bt :QE_bQ'
cosh bt 3

i 2bs
t sin bt m

. 52 —b?
tcos bt I7
u(t) unit step %
4(t) impulse function 1
f(t) periodic —q-—'f“ ;::;T;{{:'}L!t
t"f(t) (-1)" L5 F(s)

Linearity:
L{f+ g} = f—'{f}+ﬁ{q}: L{kf} = kL{f}-
Shift theorems: If £{f({)} = ) then

L{e " f(t)} = F(s + a).
L{u(t —d)f(t—d)} =e *"F(s) d>0.

u(t) is the unit step or Heaviside function.
Laplace transform of derivatives and integrals:
L{f'} = sF(s) -
L{f"} = $F(s) — s(0) - £(0).

c { /nE f(t)dt} _ %F(s).

The convolution theorem:
The Laplace transform of f(t) * g(t) is F(s)G(s) where

F(8) % g(t) = j F(E— N)g(N) dX = g(t) * F(2).

The Fourier transform
The Fourier transform of f(t) is F(w) defined by

FUO) = [ 10 at = Fo).
The inverse Fourier transform is given by

FYF(w)} = % /_x F(w)e™ dw = f(t).

function f(t) Fourier transform F(w)
Au(t)e™ ", a >0 “fjw
1 —a<t<a 2sinwao
{ 0 otherwise w
A constant 2w Ad(w)
u(t)A A (md(w) — i)
o(t) 1
5(t —a) e Iwa
cos at m(0(w + a) + d(w — a))
sin at F(0(w—a) —d(w +a))
sgn(t) J%
: .
+ —jmsgn(w)
et a>0 ;Q%f
Linearity:

Ff+gy =F{fr+Flgy,  Flkf} =kF{f}
Shift theorems: If F'(w) is the Fourier transform of f(t)

F{? f(t)} = F(w — a), a constant.

F{f(t —a)} = e 7™ F(w), a constant.

Differentiation: The Fourier transform of the
nth derivative, f(™(t), is (jw)"F(w).
Duality: If F(w) is the Fourier transform of f(t) then

the Fourier transform of F(t) = 2m x f(—w).

Convolution and correlation:
The Fourier transform of f(t) * g(t) is F'(w)G(w) where

f(t) * g(t) = /_1 FNg(t = A)dA = g(t) * f(2).

The Fourier transform of f(t)xg(t) is F(w)G(—w) where

_ ]_m FONgOA — 1) dA.

The z transform

Given a sequence, f[k], k =0,1,2..., the (one-sided)
z transform of f[k|, is F(z) defined by

= Z(fM) = 3 flke

sequence f[k] z transform F(z)
1 k=0
o[k] =
0 k#0
1 k>0
ulk] = = =
0 k<0 o
k (e
e—u.k ‘_:;_"
a* e
[~ k az
ka {z:r(}"
k2 z{z+1)
sifiak zsina
cosak ze€—2zcos a4l
—ak _: < ze " sinb
e “"sin bk P T e
—ak ot 22— ze "% cosbh
e cos bk W
e % flk] F(e"2)
kfk] —2§; F(2)

Linearity: If f[k] and g[k] are two sequences and ¢ is a
constant

Z{f[K] + glk]} = Z{f[k]} + Z{g[k]}.
Z{cfk]} = cZ{f[k]}.
First shift theorem:
Z{flk+1]} = zF(z) — =f]0].
Z{flk+2]} = 2°F(2) — 2° f[0] — 2 f[1].
Second shift theorem:
Z{flk—ilulk—i} =2""F(2), i=123...

where F(z) is the z transform of f[k] and u[k] is the unit
Ht(‘fl} sequence.

Convolution: Z{f[k] * g[k]} = F(2)G(z).

where

fK+ gkl = 3 Flmlglh — .

m=0

Discrete Fourier transform (dft)

Given a sequence of N terms

{g(0]. g[1],9[2],..., g[N — 1]}

its discrete Fourier transform (dft) is the sequence

{G[0),G[1),G[2],....GIN — 1]}
where .
Glk] = Z n]e—zfnkﬂfN.
Further
N—1
n,] = (W ZJHJ\W/}\'

Maclaurin & Taylor Series

Maclaurin Series:

2 T
@) = £0) + /') + Z 0 + ...+ T (0 +
Taylor series (one variable):

_— . 2
+ D)+ Eh iy

= (T :TGY f{r-)(ﬂ.) +

Taylor series (two variables): For a function f(z,y) of
two variables

fa) = f@n+ g (@-ag+ - b}%) f(a.b)

ta(e-0Z+w-n2) san+

+L ((:r—a)% - b}g—y) Fla,b) +

r!
Stationary points in two variables: For z = f(z,y),
stationary points (a,b) are located by solving £ =0
O*f O f :

and &L — 0. Define A — N,
and ay = 0. Define A = 922 057 (6:1:6 at (a, b).

The type of stationary point is given by:

A <O saddle point.

o f - .
A>0and - >0 minimum point.
Oz
a*f . .
A >0and - <0 maximum point.
Oz

Numerical Integration

Simpson’s rule: for n even, and h = 2—*0_

[;E,k flx)de = %(fu +4fi +2f2 +4f5+

“+2fu 2+4f7! 1+fn)-

I AR (9

Truncation error =~ 50

n point Gauss-Legendre formula:

/_1 flz)dz ~ Zwif(a,

n T wi
2 £0.577350  1.000000
3 £0.774597  0.555556
0.0  0.888889

4 +£0.861136 0.347855
+0.339981  0.652145
+0.906180  0.236927
0.0 0.568889
+0.538469  0.478629

o

Ordinary differential equations
dy
To solve e (z,y) :
Euler’s method:
Yr41 = Yr + hf(:rn Yr).
Modified Euler method:

Y =yt hfe [P = faen, ).

Y =y + g(ﬂ- + 7).
Runge-Kutta method:
k1
2
), ka = hf(@r + h,yr + ks).

F
ki =hf(@rye), ke =hf(@r+ 5.9+

F 1
ks = hf(z, + gy + ;

).

1
Yr41 = Yr + 6 (kl + 2ko + 2k3 + ka).



