BUILDING PACKAGES INR

Creator: Dr Patrick English

Building packages in R might seem like a very high-end programming level skill, but in fact if
you have cracked writing functions then you are just a couple of steps away from developing
your own R package.

This guide will walk you through existing packages and their components, give a brief recap
on function writing and will then take you through the nuts and bolts of constructing R
packages. It is split into the following sections:

1. What are R packages and why might we want to develop one?
2. Writing functions - a quick recap

3. Constructing an R package

4. Depositing R packages on GitHub

5. A quick note on running external package functions

Those familiar with R packages and comfortable writing functions may wish to proceed
straight to section three, but should consult section 2 of the guide for the codes necessary
to create the functions used in the example.

This guide assumes a fairly competent level of R knowledge from the start - users should
already have good knowledge of what a function is and how to use one before proceeding
with this guide. This Quick-R guide provides a good resource for users needing to quickly
familiarise themselves with functions and their applications. | also work with R_Studio
throughout this piece.

The
g University
Of

7 Sheffield.

_ Sheffield
L | PiRden Methods

Institute.

https://www.statmethods.net/management/userfunctions.html
https://www.rstudio.com/

Users familiar and experienced in R probably already know what a package is and how to use
them, but the following section provides some base level knowledge which might be worth
reading to help you get thinking about how packages actually work and how writing one might
be useful to you.

Quite simply, packages are the organs of R and functions are their arteries and veins. AlImost
every time we create, manipulate, examine, and even display objects, we are using functions
and commands which are nested in together in R packages.

Some of the most common packages that users will work with include the graphing package
geplot (now on its second full version), stats (the basic R stats package which contains
functions for running ANOVAs, linear regressions, and correlation analyses), and plyr (and
dplyr, the packages most frequently used for transforming, combining, and describing data).

Quick-R describes packages as “collections of R functions, data, and compiled code in a well-
defined format”. Essentially, a package serves as a place to collate and store R scripts and
code which we can load up and call in a flash. When we install and load up packages to use in
our R workings, we are essentially simultaneously ‘calling up’ a whole bunch of interrelated
and interconnected functions and code into our workspace, ready for us to use at a moment's
notice.

Which leads to the first reason why developing our own R package might be useful to us as we
g0 about our working in R: just like writing and using functions, constructing R packages and
loading them up when we open up R or clear the global environment can save us a huge
amount of time and coding (and head!) space.

The second reason lies in the ability for other users to examine, help us, and improve on our
code.

The guide will later take readers through how to publish R packages to GitHub as open
repositories. This allows our friends, colleagues and peers to look over our coding and
formatting and help us out with areas we might be stuck on or which might need improving or
adapting for generalisability/further use. Sharing, learning and improving knowledge is vital to
the success of every professional (in any career).

Packages are listed as a tab on the bottom-right pane in our R-studio workspace (using default
view), as below:

Sheffield
v Methods
Institute.

02

https://www.statmethods.net/interface/packages.html

G .oy - A Go o flesfunciion - Adding - £ Project: thone) =
Consale -/ S Erwironment History Cenmections =i
[d | importDataset - | & List -

R version 3.4.3 (2017-11-38) -- "Kite-Eating Tree®
Cozyright (C} 2817 The R Foundotion for Statistical Computing
Platform: x86_B4-opple-0aminls. 6.0 (B4-bit)

T Global Environment =

R is free softeore ond cones with ABSOLUTELY N3 WARRANTY, Fnment s
You are welcone to redistribute it under cartoin conditions.
Tyse ‘license(}' or ‘licence()’ for distrisution detsils

Natural language suport buk ruaning in an Englisn locale

R is o collabarative project with nany contributors.

Tyoe ‘contributers()’ for more infornotion ond
‘citotion(}’ on how to cite R or R pockoges in publicotiens.
Flles Plots Fackages Help Viewer =
Type “deno()” for some denos, help(l' for on-lime help, or = -
‘help.stort(}’ for on HTML browser interfece to help. Ol nstall | @ Update
Type ‘L)’ to quit K. Name Descrgtion wession
System Library
[Werkspace Tloaded from -/ RDote]
) abind Combine Multidimensional Arrays 14-5
) Amelia A Pragram for Missing Data 1L7.4
[assertha Easy Pre and Post Assertions 0.2.0
I} backports Reimplementations of Functions Introduced 1.1.2
Since R-1.0.0
|| baseB4enc Tools for basetd encoding 0.1-3
(-] Boost C+ + Header Files 1.66.0-1
) bindr Parametrized Active Bindings 0.11
| bindrcpp An Repp’ Interface m Active Bindings n.2.2
[hitaps Bitwise Operations L0-6
[beat Boatstrap Furctions [Criginally by Angele 1.3-20
Canty far 5)
I brew Temglating Framework for Repart L.0-6
Generatian
| broom Convert Statistical Analysis Dbjects Into Tidy 0.9.4
Data Frames
[calir Call R from R 203
) car Coamnpanion o Applied Regression 3.0-0
[carData Companion to Applied Regression Data Sets 3.0-1
[carer Classification and Regression Training 6.0-79

This is our package library, where all the default packages which come with the R-studio
installation are listed. Whenever we add packages through typing directly into the console or
using the CRAN/GitHub repositories, they will appear in this list. We access downloaded
packages by typing library("PACKAGE NAME") into the R console.

If we click on a package - for example ‘boot’ — we are presented with a bunch of links to
various help and description files. The first ‘'DESCRIPTION' file contains information on the
package itself. Following this are help pages for all of the package's various components - its
functions (such as boot, boot.ci) and example data frames (such as beaver, bigcity):

© - op e - Addin B Project (Haned
Console -/ (51 Enviranment Mistary Connections. =0
2 | | 2 bmpost Dataset - | o List =
R version 3.4.3 (2917-11-38) -- "Kite-Eating Tree” & Slobal Envirgnment +

Copyright {C} 2017 The R Foundation for Statisticol Computing
Platform: =BG 64-aople-darwinl5.6.0 (64-bit)

R 5 frée Software ond Comes mith ABSOLUTELY NO WARRANTY. s L i ampey
You are welcone to redistribute it under certain conditions.
Type ‘license()’ or "licence(d" for distribution details.

Natural language suppart but running in an English locale
R 15 a collabarative project with nany contributars.

Type 'contributors(}’ for more information and
‘citation(3’ an how to cite R or B pockoges in publications.

Files Flors Packages Help Wiewer -l

Type ‘demol)” for some demos, ‘help()® for on-line help, or

‘help.start(}’ for on HTML browser interfoce to help. & Q

Type)" to quit R, R: Bocestran Functions (Originally by Angelo Canty for) = Fnd 0T

[Rorkapace Landad from - Riets] Documentation for package ‘boot’ version 1.3-
20

+ DESCRIPTION fila.

Help Pages

sbegi Narparametic ABE Confidence lnlenats
Bcma Mianthly Excess Returns

side Delay in AIDS Reporting in England and Wales
alroands Failuras of Air-canditioning Equipmant
aircondi7 Failures of Aircondilioning Equipment

amis Car Speeding and Warning Signs

aml Remission Times for Acute Mystoganous Leukaemia
beavar Boaver Bady Tamparature Data,

bigeity Population of U8, Cilies

boat Bootstran Resampling

e ey Binntaivan Fazampling derays

hent Narnaramatrie Bacsetran Canfirancs [nanmla

Sheffield
Methods
Institute.

When we load a package by calling it using the library() command, we are bringing each of
these elements into our workspace and global environment (though to keep things clean,
many of them are ‘masked’ from actually appearing in the global environment panel itself).
Clicking through on any of the links gives us descriptive information on the object. For
example, click the ‘boot’ link to be presented with the following screen:

Here we can see a description of the object - in this case it is a function to be applied to data
- its usage (the commands which are called, and arguments required upon applying the
function), and a list of the ‘arguments’ taken by the function (what user inputs are required).
Further down are further details and examples of how to use function.

This little exploration gives us a great visualisation as to what a package actually is and sets up
nicely for developing our own.

Common and extensively developed R packages such as ggplot2, boot, and plyr come with an
extensive amount of documentation, data, and how-to guides which enable users to
familiarise themselves with and master using the package.

For our purposes, we are not so interested (yet!) in developing packages for world-wide usage
and we are going to focus our package on building a solid collection of the most important
components of all R packages - functions.

This section is a quick reminder of what functions are and how to specify them in R scripts.
Note that it is important at this stage to stress that, rather than placing commands directly
into the R console and working from there, when developing functions and packages it is best
practice to use R scripts. Open a new script by following (from the top menu in R Studio) ‘File >
New File > R Script’.

Functions are essentially shortcuts for some more complex code which can apply any number
of functions and loops to objects (or other functions) following user-defined arguments.

For example, we might specify a function called ‘heating_advice’ which takes the arguments
feeling’ - a string variable whether or not the user feels hot or cold - and ‘thermostat’ - a
numeric variable reporting the current thermostat level. We will use a couple of if statements
to inform the function to display advice on what the user should do to the thermostat
depending on whether or not they report feeling hot or cold:

Sheffield
v Methods
Institute.

04

http://www.dummies.com/programming/r/how-to-use-if-statements-in-r/

heating_advice <- function(feeling, thermostat) {
if(feeling == "Hot") {
new_thermostat <- as.numeric(thermostat - 3) print("You are feeling too
hot, follow this advice:")
cat(paste('Turn the thermostat down to', new_thermostat, \n"))

if(feeling == "Cold") {
new_thermostat <- as.numeric(thermostat + 3) print("You are feeling too
cold, follow this advice:")
cat(paste('Turn the thermostat up to', new_thermostat, \n'))

}

Remember to run the R script once it is written out in order to load the function into the
global environment. We can call the function and then use “Hot” and 21 as examples written
into the console to check that the function is working:

heating_advice("Hot", 21)

[1] "You are feeling too hot, follow this advice:" Turn the thermostat down to 18

Let's imagine that we want to do something similar but this time using windows instead of
thermostats. The ‘window_advice’ function again takes the argument ‘feeling’ (self-reported
hot or coldness) but this time takes ‘windows’ (how many windows are open) instead of the
thermostat temperature. Write and run the following in a new R script window.

window_advice <- function(feeling, windows) {
if(feeling == "Hot") {
new_windows <- as.numeric(windows + 1)
print("You are feeling too hot, follow this advice:") cat(paste('Try opening,
new_windows, 'windows \n"))

if(feeling == "Cold") {
new_windows <- as.numeric(windows - 1)
print("You are feeling too hot, follow this advice:") cat(paste('Try having,
new_windows, 'window(s) open \n'))

}

Sheffield
Methods
Institute.

Again, we can test the function works properly with an imaginary situation of feeling cold with
3 windows open written into the console:

These are the two functions from which we will build our R package.

Once we have a set of functions, developing an R package is really quite easy thanks to the
‘devtools’ and ‘roxygen’ packages. The former helps us construct the basics of R packages (all
the necessary components and functions) and build in other packages into our script, while
the latter helps us write up the documentation. This helpful explainer on devtools is
definitely worth referring to and revising from as we call commands and functions in
throughout this example.

Note: at this stage, it will be necessary to ‘active’ development tools on your system. This is a
fairly easy task and there are really simple walkthrough guides available for Mac users here
and Windows users here.

Once we have activated development tools, we can install the devtools directly from the
CRAN repository using the following command: install.packages(“devtools”). Once
downloaded, load the package and then use the following command to install roxygen from
the GitHub repository: devtools::

install_github("klutometis/roxygen”). Altogether, that code should look like this:

You will of course notice that the command to install roxygen is quite different to that which
we normally use to access packages (such as devtools). This is because, like many
thousands of packages, roxygen is listed on the GitHub repository rather than CRAN. As
such, we have to specify to R to search for and download roxygen from GitHub using
devtools’ install_github command.

Sheffield
v Methods
Institute.

https://www.r-project.org/nosvn/pandoc/devtools.html
https://www.cnet.com/how-to/install-command-line-developer-tools-in-os-x/
https://cran.r-project.org/bin/windows/Rtools/

While GitHub is an entirely open and accessible platform on which we can store and
disseminate R packages (among a large number of other programming resources), listing on
the CRAN repositories requires the passing of a number of strict tests and analysis on
packages. This helps to ensure high standards of stability and usability of packages.

With devtools installed, we can move to developing and publishing our R package. Let's
imagine that we want to be able to quickly and easily load up and share our heating and

window advice functions to the rest of the world by making a package and sharing it online.

The first step is to ‘begin’ a package building project in R Studio. Navigate through ‘File > New
Project’ and select ‘New Directory > R Package' to proceed to the following screen:

maey Create B Package

T Paciage rime:
Type “Semof)® dor iome deson, “help()’ for on-lire halp, Facuag g
“hala.start(}’ for on KT Drowaer Lrerface o halp.
Tye "3 to gult K. R Create parkige Dbl 4 e e

[Rorkigace Loaded from - MOate]

whages Help Viewss =0

. e ieaginaiy by At Camey b 8

s tation for package 'boot’ wersion 1.3-
[—
. o
Creant 3 G MPOUIETY /8 DBCRI wiTh SR propect

-]

Opan in e sessicn i e Regarmatnd ARG onfiinc Ieteres

T Elatmy i A0S Flaprrting n England and Walen
L] Fashoton of At 0raBilain
:

JTUT
[
£
{
i
f

{
!
i
i

Insert TooHotTooCold" as the package name, specify a working directory (I will be using
‘~Documents/TooHotTooCold) and leave all other options blank1. Click ‘Create project’ to
establish the project and load up the build tools in R Studio. You will notice that there are
options to ‘Create a git repository’ and ‘use packrat with this project’. While these options can
be very useful, at this stage we will keep things nice and simple and work directly inside R
Studio before moving ‘up and out’ to publishing via GitHub.

When the project space loads, it will look a little something like the below. In the top left we
will see an ‘example’ script with a function named ‘hello world" and some helpful keyboard
shortcuts. In the bottom right is the working directory for TooHotTooCold. In there we can
see that R Studio has already created a number of files and folders in which we will deposit
(in the 'R folder) and generate (in the ‘man’ folder) scripts to build the package:

Sheffield
Methods
Institute.

& TooHorTooCold -

—
@ hello R [T Ervirnmert Kistory Conmections Build Gt =
[ISourceonSave | T4 0 - #Run | "% =source - = ¢ | | #*importDacaset - | & st -
Hello, world! & Global Emwirenment =
&
© This is o exonple function named "hello®
¥ which prints *Hells, world!®.
#
You can learn nore ehout package cuthoring with RStudic at:

Environment s empty

1
z
3
+
3
&
T 0

8 # httois/sr-pkgs.hed.co.ngs

3 @

id & Some useful keyboord shortcuts for packoge outhoring:
sEL

z

3

1s

15

15

¥

1z ® Build o7d Reload Package: ‘'Owd + Shift + 8°
13 # Check Packope: ‘md + Shift + E
o Test PDC\AIQE: ‘Cmd + Shift + T Files Plots Pac hages Help Viewer =j
New Fold O pelete = Re More -
- hella < functiond { T Mew Folder e o Reame i Mo
17 print{"Hella, morldi™} 1 48 Home © Documests © TookotTooCold - TooMotTaoCold ® -
=B a hame size Madified
19 t.
I Rbuildigneee we Jun 1, 2018, 10:58 AM
SR TR AL L Ricript s 7] % DESCRIFTION 1748 Jun 1, 2018, 10:59 AM
Consale - |Documens TeoHol TooCold | Tooko ToeCald [-0 | &4 man
u NAMESPACE e Jun 1, 2018, 10:59 AM
JEr
You are welcone to redistribute 1t under certain conditiens. - ® TacHorTeoCold fprs 1568 Jun 1, 2018, 10,58 AM

Type 'licanse(}' or 'licence(}’ for distribstion detsils.
Katural languege support but ruaning in an English locele

R iz o collabarative project with mony contributars.

Ty 'comtributers()’ for more informction and

‘cltation(d' on how to cite R or R pockoges in publicatiens,

Tyse 'dena()’ for Some deros, ‘help()' for od-line help, ar
‘help.start}’ for en HTML browser interface to help.

Tyse 'ql)' o quit R

-

Close the ‘hello.R" script and delete it from the R folder. Instead, replace it with a new script
titled ‘window_advice.R" with just the same code as before. Save this file into the R folder and
run it to load the function into the global environment (this means we can instantly call and

check it at any time):

& TooHmTooCok -

@ window_ahice, . —[7 Ervironmem History Conmections Build Gt =1
[ISourceonsave T4 0 - +Run | %+ | =Source - | = 4 | | 7®imporcDataset - | & Ust -
1- window_advice < function{feeling, windows) [7k Global Emironment = 0
2. if(fealing = "Hat"} {
3 new_windans < as.umericiuindows + 13 Enctions
+ print(“You are fesling too hot, follom this odvice:") - window_advice function Cfeeling, windows)
5 cat(paste(Try opening’, new_windoss, ‘windows n'))
3
7
B~ 1f(Fealing = "Cold") {
5 new_windows < @s.numericiwindows - 13
18 print(*¥ou ore feeling toa hot, follow this odvice:')
Al 1 cat{pasta("Try having’, mes_mindows, “windom(s) open “wn'ld
1z 1
13}
R Files Plows Pachages Help Viewer =1
O MewFolder @ Delete = Rerame | g More -
|I|\[Home = Documests - TookotTooCold - TooMotTooCold ~ R . S
a pame size Madified
Tt .
) 9 window_advice R 462 B Jun 1, 2018, 11:32 AM
1a:1 (Top Level) & R Scripe &

Cansale - Documens| TeoHarTaoCald TookarTasCold
Tyge ‘g1 to quit R.

> window_gdvice <- function(feeling, windows) {

+ if{fealing — "Hat
+ nen_mindows < as.runericimindows + 13

+ print(“fou are feeling toc hot, Follow this advice:")

+ cat(postel ' Try opening”, new_windows, 'windows n'y)

+ 1

+

+ 1FCFeeling = "Cold") {

+ nen_mindows <- gs.oumericiwindons - 13

+ print(*fou are feeling too hot, follow this advice:")

+ cat(poste("Try having', nem_mindows, "windoe(s) ogen '3}
+ 1

+1

N

As mentioned above, the roxygen package allows us to quickly and easily write up
documentation for our R package. Documentation is very important as it helps users to
understand what our functions do, how to use them, and what options and arguments the
functions take which might be customisable or interchangeable.

Sheffield
Methods
Institute.

Using roxygen to write documentation is very easy. First, re-load the devtools and roxygen
packages. Then place the following lines into the top of the window_advice script and re-save
it:

#' @title Window_advice: should you open or close windows?

#' @description This function will tell you how to adjust your temperature
depending on how many windows you have open, and if you are feeling hot or
cold

#' @param feeling specify whether you are feeling hot or cold, string inputs "Hot"
or "Cold"

#' @param windows specify how many windows you currently have open, numeric
inputs

#' @examples window_advice(feeling = "hot", windows = 1)

"

#' specifies that there are roxygen sections of the script which we want to turn into
documentation. The code following @ statements tells roxygen how to order and arrange the
documentation. The roxygen package provides a number of different @ paramaters to help
us buid our documentation which can all be seen by calling the ryoxgen help screen.
Included above are the most important - the title and description give a brief but
comprehensive overview as to what the function does, the param code will tell users what
arguments the function takes, while the examples code gives users and example of how to
call and specify our function.

Repeat exactly the same process on the second script ‘heating_advice’ using the following
code and saving the R script in the same location.

#' @title Heating_advice: should you increase or decrease your thermostat?

#' @description This function will tell you how to adjust your temperature
depending on what temperature your thermostat is set to, and if you are feeling
hot or cold

#' @param feeling specify whether you are feeling hot or cold, string inputs "Hot"
or "Cold"

#' @param thermostat specify the temperature that your thermostat is currently
set to, numeric inputs

#' @examples heating_advice(feeling = "cold", thermostat = 17) #'

heating_advice <- function(feeling, thermostat) {
if(feeling == "Hot") {
new_thermostat <- as.numeric(thermostat - 3)
print("You are feeling too hot, follow this advice:")
cat(paste('Turn the thermostat down to', new_thermostat, \n"))

Sheffield
Methods
Institute.

With our functions defined and documentation script added, we are now ready to build and
process the package. The two most important tools to do this are the devtools::document()
function and the ‘Install and Restart’ option under the ‘Build’ tab in the top-right pane of your
R Studio window.

The devtools:document() function will automatically write up the R scripts into .Rd files and
will generate any missing documentation files not already generated. Run this function
directly into the console. Once this process has been completed, click the ‘Install and Restart’
tool in the ‘Build’ tab to tie together and load up our R package:

G - opla- A G 1o flkesfunrion - = Adding = &l TooHoTooCol =
© | windew_idhice O heaing_advice.d =0 Emwi History Conmections Build Git =0
[Ssurceonsamve O S - +Run | "% =Source - = 21 install and Restart | [2] Check | {3 wore -
1 # ¥title Heating_acvica: should you IRCredse or decredse your thermostat?
Z 0" Bdescription This function will tell you how to adjust wour tempercture desending on what tenperature ye = & 0 INSTALL --ma-miltiarch --with-keep.sounce ToakotToalold
3 a' €paran feeling specify whether you are feelimg hot or cold, string inguts "Hot™ o “Cold * installing to library */Library/Franeworks/R, ¢ workverslans 3. 40
4 © Eparan thernostot specify the temperature that your thermostet is currently set to, rumeric inputs Resourees A Lhrary®
: &' guxomples haoting_sdvice(fesling = 'cold”, thermostor = 17) « (nstalling =sources package ‘TocHotTooCald' ...
s -p
T ** preparing packoge for lozy loading
B~ heating_odvice =- function(feeling, thermestat) | = help
9~ if(fealing — "Hot"} { =or {nstalling help indices
10 nen_thernostat <- oS.nunericCthermostet - 30 ** ilding pockege indices
1 print(*You are fesling too hot, follom t1is cdwice:") ** testing Lf installed package con 9e Loaded
12 cot{pastal"Turn Che thermostat down to', nes_thereostot, "wn'l) * DONE (TooHotTooCold)
13 i
14
Files Plots Pachages Help Viewer
15+ if(feeling = "Cold") { - o " : =1
16 nem_thernostat <- os.nunericithermastet + 33 Bl nzall | @ Update | G Pacat
17 print("fou are feeling too cold, follow this advice:") Name: Desceiptian Versicn
18 catlpaseel Turn the thermostot up to, nen_thermestat, "'l 1 sringr Simple, Consstent Wiappers foe Common 1.3.0
19 } saring Operations
0} [sunvival Survival Analysis 2.41-3
:_‘1 — s ke Tl The Interface 343
il {opleveh TS testtha Unit Testing for & 2.0.0
=0 [dbble Simple Data Franmes L42
[- Easily Tidy Data with ‘spread(’ and ‘gacher 0.8.0
tTopCold dacumentation B Functicns
Loading TecHotTooCald) ticyselact Salact from a Sat of Sirings 0.2.4
Warning: The existing 'MAMESPACE' file was not generated by roxygenz, and will not be owerwritten. [timeDate Rmetrics - Chronolegical and Calendar 3043102
Writing heoting_advice.Rd (Hajects
Writing window_advice Rd ey | TooHotTooCold What the Package Does (Tite Casel 0L
I toals Touls for Fackage Development 143
Restarting R session... [T Unicode Taxt Processing L3
1) utils The R Urils Package 343
library(TaokHatToalald —
- wCT 4 [viridis Dofault Cobar Mags from ‘matplotlib’ 051
Attaching packoge: “ToaHatTooCold’ [viridisLite setayll;:nlor Mags from ‘matploulit’ e 0.3.0
‘arsion
The following objects ore masked _by_ " GlobalEm: | whisker Himustachelt for R, Ingichess templating 0.3-2
[withr Bun Cade "With' Temparariy kadified rl2
heating odvice, windaw_advice Global Sae
T el L] LI

We can see that after the document() function wrote up our two function scripts into .Rd
files, the ‘Install and Restart’ option restarted our R session and loaded the package up into
the global environment. Finally, we can now see that the newly constructed TooHotTooCold
package is listed and loaded in our package library. It really is that simple!

Sheffield
Methods
Institute.

We can check that the functions are working correctly by manually calling the functions and
running our examples, and calling the help files by running “’heating_advice” and “?
window_advice” in the console. You can see that all of our ryoxgen commands in the function

scripts have created a nicely laid out, clean help file:

& TooHmTooCold =

¢ - - A o flefundion H o+ - Adding -
O windew_adhiceR © 9 heating_acvice.R [T Ervirenmemt History Conmections Build it =0
| |Source on Save O, 4 - +Run | "% | =Source - = #| nstall and Restart | [7] Check | {F More -
1 |#title Heoting odvice: showld you increcse or decresse your thermostot! PHINLLLUNS U EELIES MLLE USLYT L1 WL L LSl IELLY L I
2 Bdescription This functien will tell you how to odjust yeur tempersture depending on what temperature your © L0 COde:
3 @parom feeling specify whether you are feeling hot or cold, string irputs “Hot™ or “Cold” hello
4 Id c1f yl ura th your th 1 Frentl L Pl inpu . .
£ s Sy L 8L IS S U S G M U g e st 0
5 - * checking Rd contents ... OK
= *® checking for unstated dependencies in exanples ... 0K
= checking examples ... ERROR
&-ating_adice = function(fesling, thermostat) [Running examgles in ‘' ToolotTosCols-Ex R® Failed
9+ if(feeling == “Hot") { The errar most likely occurred in:
1 new_thernostat < as.numericCthermostat - 3)
u print("You are feeling too het, Follow this advice:™) » bose: 'assign(” ptime”, proc. time), pas = "CheckExEm™)

» @0 Mame: hello

12 cat{paste] "Turn the thermostet down to”, nes_thermostgt, "“n"J2
i3 1 = ### Title: Hello. Warld!
14
Files Plots Pachages Hell WREWED
15~ ifffeeling == "Cold"}d { - ’ a .
16 new_thermostat < as,mumericithermostat + 33 = $ &
i7 print{"You are feeling too cold, follow this odwice:") R Windew_ackice; sh0id vou open of (o5e windews? =
15 cot{pastel "Turm the thermostet up t0°, nem_thermoseat, "))
19 } Wi ice {Taol L
2
Fal . .
251 (rop Leven b Window_advice: should you open or close
_{I windows?

Cansale -~ |Documents/TeoHoTosCald [TocHo TooCald |

-; Taindon_odvice
] Description

*
This lunction wil tell you how o adjust you lemperalure cependng an how many
windows yau hava opan, and if you ara faeing hot or oold

Usage

whnsdon_advice(feeling, windowe)

Arguments

feeling specify whether you are fesling hat or cold, string imputs. “Haot® ar *Cald”

wingows spacily how many windows you currantly hava opan, numere inputs

Examples

Re-run the same examples as we used to test the functions originally, and if everything
checks out then we can move to publishing. Remember, now that the package has been built
and installed, we don't need to re-run or re-load our functions - just load up the package and
everything will arrive seamlessly into the work space ready to be called. Lastly, we can update
and add functions to our package at any time by altering/generating new R scripts to deposit
into the R folder within the package directory (remember then to update the documents and

re-install the package!)

This final section outlines how to publish completed packages on the GitHub repository. If
you don't already have a GitHub account, it is very easy to set up and establish a repository
by following this guide.

Sheffield
Methods
Institute.

Establish a new repository on your GitHub with the same name as the package -
TooHotTooCold. Add a short description, select ‘Initialize this repository with a README', and
leave all else as it is:

= - 1 =
< & githubcom & [IR 7 |

Pull requests Issues

Create a new repository

A repository contains all the flea for your praject, Including the revisian history.

Owmier Repasitory name

§ patrick-eng~ | | TooHotTooCald v
Great repository names are short and memorable. Need inspiration? How about fictional-succotash.
Description (optionall

A package o halp you reach that optirmum temperaturs

(-] I: Public
Anpane can see this repasitary. You choase wha can commit.
E Private
' Yau choose who Can 5es 3N commit 1o this rapositary,

B nitlalize thiz repazitary with a README
This wil let you Immed|abely clone he reposhiony o your computer, Skip this step I you're imparting an existing
repasitary

hele gitigere: Nene - Add a licerse: None » | (3

To prepare our package for publication we must add a few extra details. We need to make
sure we outline the package information in the DESCRIPTION text file provided by the
package build.

This is a simple manual process of opening the file up in your designated text editing service
and filing in titles, short descriptions, author names and contact information, and so on and
so forth. This is important information for people to learn a little more about your package
and how to use it. Be sure to use the pre-built template and try something like this:

Sheffield
Methods
Institute.

ou can find out more about Licenses from this guide.
With details entered, close the package build in R Studio by following ‘File > Close Project’.
Then, all is left to do is to load up our newly created package files to the GitHub repository.

This is a very simple ‘drag and drop’ process. First, open up the TooHotTooCold repository
home page, which should look like this:

- = : " - -
< [= & githia.com) o h 7 |

Pull requests

LI patrick-eng / TooHotTooCold @watch~ 0 | drSwme 0 ¥FRok 0
<> Code Issues O Puill reguests 0 Projects 0 Wiki insights. Sattings
A package to help you reach that optimum temperature Edit
Add topics
01 commit ¥ 1branch 0 releases AL 1 contributor
Eranch; master ~ New pull requast Craatenew file | Upload flles Find fila
1 patrick-eng Inital commit Latest commit 4F4e780 a minde ago
=| README.md Initial commit a minute ago

EF|README.mel

TooHotTooCold

A package to help you reach that eplimurn temperature

Then, ‘drag’ your entire package folder from your explorer/finder window into the
repository. Once the upload has been completed, we are asked to ‘commit’ our changes with
the option to provide a brief overview of what we've done. It is really useful to get into the
habit of labelling all of your changes on GitHub so that if something goes wrong or you have
another reason to need to go back to a previous version, you can track your work and
changes really quickly and easily:

< i & github.com & LR RN =N

Or choose your files

=] DESCRIPTION
&| fmanfheating_advice.Rd

El /manwindow_acivice.Rd

ran/hello, Rd

E| NAMESPACE
JRIwindew_zdivice R

| jfheating_advice 7

¥ OoX X X X X X X

=] TooHot TooCold. Rproj

ﬁ_ Commit changes

Initial upload of package

Dragged and dropped the files from my finder window into the repositery, and leok what happened!

O o Commit directly tothe saster branch,

I Create a new branch for this commit and start a pull request, Learn mare abaut pull recquests,

Comimit changes |[I=T57]

Sheffield
Methods
Institute.

https://www.r-project.org/Licenses/

Once we click ‘Commit changes’, the files will be processed into the repository and then
appear in the '<> Code' tab. And that's that! The package is uploaded and ready to be
accessed and used by any researcher across the globe.

You can test the build by running the install_GitHub command through the devtools package:
devtools::install GitHub("YOUR-GITHUB- USERNAME/TooHotTooCold").

As you develop more complex packages, it is also a good idea to test this on a separate
machine which was not involved in the build, just to check that any and all of the
dependencies and external functions have been correctly specified and included in the
package documentation.

Although it is not covered in this example, often we might find ourselves building functions
which call other functions from different packages into the script. Without proper directing,
our package documentation will not automatically pick this up and so our package functions
will not run properly once processed and disseminated.

Luckily, devtools provides another really easy way for us to include functions from other
packages into our scripts. For example, let's say we want to make use of some functions from
‘dplyr’ perhaps to summarise or manipulate our data.

Firstly, we can tell the package to ‘require’ (in other words download and attach) the dplyr
package when installing our package by using the devtools::use_package() function. Not only
will this function write the necessary code into our documentation file to ensure that dplyr is
downloaded (if needed) and attached upon installing and attaching the TooHotTooCold
package, but it also tells us the code we need to use in our own package scripts to call and
apply functions from dplyr. Running “devtools::use_package(“dplyr")” into the console
produces an output looking like this:

Devtools is telling us that in order to use any dplyr functions in our own package, we would
have to place “dplyr:” in front of them. For example, a function to summarise a data frame
must be called like this: “dplyr::summarise(data, mean=mean(data$varname) ...)".

Sheffield
v Methods
Institute.

14

