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Abstract

Traditionally photospheric intensity flow fields have been traced
using local correlation tracking of magnetic bright points and the
revealed vortex flows have been identified by eye. This manual
approach has two major shortcomings. First, it introduces
observational bias and second a large number of vortex flow fields
are most likely missed due to the sheer scale of the task, which also
has adverse effects on the variance of the statistical analysis. Small-
scale vortices in the quiet Sun regions are widely accepted to form
due to turbulent convection [1-3]. Solar photospheric vortex flows
have drawn the attention of researchers as they have the potential to
excite a wide range of MHD waves, e.g. slow and fast magneto-
acoustic as well as Alfven [4]. In this work we present an automated
approach to identify intensity vortex flows on the photosphere and

perform a statistical analysis of their properties.
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Fig. 1. Post-processed Fe I continuuoum. Observations using the
Crisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar

Telescope.
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Fig. 3. A snapshot of the estimated velocity field based on the Fe 1 continuum (intensity shown here in grayscale) using local correlation
tracking (LCT), illustrating the 1dentified vortices and their boundaries. The circles denote the vortex center, with red referring to counter

clockwise vortices (positive) and blue clockwise vortices (negative). The orange border line denotes the vortex boundary.
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Fig. 2. Illustration of a possible physical mechanism explaining the apparent high velocity of vortex centers. The line
segments y; and yg, shown in blue and red color respectively, represent the edges of two neighboring granules. In this
instance the two edges are moving towards each other with speed |v|. The streamlines in the plane represent the velocity field
near the edges of the granules, with v, and vy representing the velocity field in the left and right granule respectively. The

velocity of the vortex center 1s labeled v

vortex center.
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The blue streamlines in the z-direction represent magnetic field lines above the

The automated vortex identification methodology we present splits into four stages: 1) pre-processing, i1)

velocity field estimation, 111) vortex identification and, 1v) vortex lifetime estimation. The intensity maps

obtained from observations have varying intensity at different times that appears to be due to atmospheric
effects, given that the magnitude of the intensity variation 1s a few standard deviations from the mean,
and, the effect 1s global, 1.e. affects almost equally the entire image and disappears in subsequent frames.

To counter these effects image histogram equalization [S] was used in the following way:

* First, the expected distribution of intensities 1s estimated by means of averaging the histogram
distributions across all frames. The rationale for this i1s that the Sun 1s not expected to change its
general power emission spectrum during the time of the observation.

* Once the expected intensity distribution has been obtained, histogram equalization 1s applied to all
frames using that distribution as a reference.

This procedure is fast and efficiently removes inter-frame flickering, and, improves the numerical

stability of the LCT method.
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