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The oscillatory modes of amagnetically twisted compressible flux tube embedded in a compressible magnetic environmentare investigated in cylindrical geometry. Thegeneral dispersion equationin terms of
Kummer’s functions is obtained for the approximation of weak and uniform internal twist.The sausage, kink and fluting modesare examined by means of the derived exact dispersion equation. The solutions of this
dispersion equation are found analytically for short and long wavelength limits under plasma conditions representative of the solar photosphere and corona. Numerical solutionsfor the phase velocity of the allowed
eigenmodes are obtained for a wide range of wavenumbers and varying magnetic twist. Our results generalize previous classical and widely applied studies of MHD wave oscillations in magnetic loops with no twist.
Applications to solar magneto-seismology are discussed.

Derivation of General Dispersion Equation

The plasma motion is governed by the system of single-fluid, linearised,
ideal-MHD equations for a compressible magnetized plasma (see,e.g. [1]):

ρ0
∂2ξ

∂t2
+ ▽p +

1

µ0
(b × (▽ × B0) + B0 × (▽ × b)) = 0, (1)

p + ξ · ▽p0 + γp0▽ξ = 0, (2)
b + ▽ × (B0 × ξ) = 0, (3)

Fig. 1: The geometry of the
problem. The straight vertical
magnetic flux tube is twisted uni-
formly. At the boundary of the
tube there is a jump in the mag-
netic twist.

where, in a cylindrical coordinate
system with the equilibrium state
inhomogeneous in the radial di-
rection only, ξ = (ξr, ξϕ, ξz) is
the Lagrangian displacement vec-
tor denoting perturbations from
the equilibrium position,ρ0(r)
and p0(r) are the unperturbed
pressure and density,B0 =
(0, B0ϕ(r), B0z(r)) is the equilib-
rium magnetic field,γ is the adi-
abatic gas index,µ0 is the mag-
netic permeability,p is the per-
turbation of plasma pressure and
b is the perturbation of the mag-
netic field. The unperturbed state
and the geometry of the imple-
mented model is shown in Fig.1.
The radius of the tuber0, and
all dependent variables inside the
tube have indexi, while quanti-
ties outside the tube are denoted
with indexe.

Let us introduce the Eulerian perturbation of total pressure: pT = p +
B0b/µ0. For the normal-mode analysis in cylindrical geometry the pertur-
bation of all quantities are Fourier decomposed,e.g.

ξ, pT ∼ exp[i(kz + mϕ − ωt)].

Hereω is the mode frequency,m is the azimuthal order of the mode,k
is the longitudinal (axial) wavenumber. In a cylindrical equilibrium, the
magnetic field and plasma pressure satisfy the equilibrium condition in the
radial direction:
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Here, the second term in the brackets represents magnetic pressure and the
third term derives from magnetic tension due to the azimuthal component
of the equilibrium magnetic field(Biϕ). We assume that the kinetic pres-
sure(pi0) is constant (though not equal to zero) inside the flux tube. Gravity
is not included in the present analysis. The particular caseof a uniformly
twisted equilibrium magnetic field,(B0(r)), of the form:

B0(r) =

{

(0, Ar,Biz), r ≤ r0,
(0, 0, Bez), r > r0,

(5)

is considered, where

Biz = B

(

1 − 2
A2r2

B2

)1/2

(6)

in order to satisfy the pressure equilibrium governed by Equation (4). Here
A and,B are arbitrary constants. This choice of magnetic field may repre-
sent solar atmospheric flux tubes with observed weakly twisted field com-
ponents (see [2]).

Solution inside the flux tube
After some algebra the set of Equations (1)-(3) may be reduced to one
equation for the internal Eulerian perturbation of total pressurepiT with
variablex:
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is the normalized variable,
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kα = k(1 − α2)1/2 is the effective longitudinal wavenumber. Let

piT ∼ xλf (x), (8)

whereλ is an arbitrary constant andf (x) is an unknown function. If we
chooseλ = −1/2, the equation for total pressure takes the form
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where
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2
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m

2
. (10)

The solutions are known as the linear combination of Whittaker functions:

f (x) = C∗
1Mκ,µ(x) + C∗

3Wκ,µ(x), (11)

whereC∗
1 andC∗

3 are arbitrary constants. The solutions can also be written
in the form of Kummer functions [3]:
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Using the functions (12), (13) and solutions (8), (11), we obtain
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where
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2
(1 − α) −
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4knE1/2
, b = 1 + m. (15)

Note, in the center of the flux tube (r = 0) the solution of Equation (9)
must be finite, therefore, the constantC∗

3 is set equal to zero. After some
algebra, we arrive at the solution for the internal Lagrangian displacement
ξir(x):
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Solution outside the flux tube

Outside the tube, inr > r0, where the magnetic twist is equal to zero and
thez component of the unperturbed magnetic field is uniform we canuse
the solution obtained by [4]:

peT = C∗
2Im(me0r) + C∗

4Km(me0r), (17)
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2I

′
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whereC∗
2 andC∗

4 are arbitrary constants andIm, Km are modified Bessel
functions of the first and second kind of orderm and
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.

Because, for the external environment,peT andξer must be finite at infinity
(r → ∞), the constantC∗

2 is set equal to zero. The dash denotes the deriva-
tive of a Bessel function:K

′

m(me0r) = dKm/dz evaluated atz = me0r.

The dispersion equation and solutions

Applying boundary conditions to the inside and outside solutions, yields
the required general dispersion relation:
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The dash denotes the derivative of a Kummer function evaluated atx = x0.
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Fig. 2: The normalized phase-speed(Vph) as function of the di-
mensionless wavenumberkr0 for casesVAe > VAi (left panel) and
VAe < VAi (right panel) in an incompressible medium. We have
taken ρi0 = ρe0 and depict the solution to the dispersion relation
for the sausage (m=0), kink (m=1) and fluting (m>1) modes.

Fig. 3: The normalized phase-speed(Vph) of the m=0 modes in a
twisted tube (VAiϕ = 0.1) as function of kr0 for casesVAe > VAi
and VAi > VAe are shown at the left and right panels. The surface
and body modesare shown. Note the change of character, from
body to surface wave, atkr0 = 0.5 (left panel) and kr0 = 1 (right
panel).

Fig. 4: The normalized phase-speed(Vph) of the m=1 modes in a
twisted tube (VAiϕ = 0.1) as function of (kr0) for casesVAe > VAi)
and VAi > VAe. The surface andbody modesare shown. Note the
band of modes aroundVAi, and kink mode which haveVph → ∞

askr0 → 0.
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Fig. 5: The normalized phase-speed(Vph) as function of(kr0) un-
der photospheric(i.e VAi > CSe > CSi > VAe) and under coronal
conditions (i.eVAe > VAi > CSi > CSe) are shown at the left and
right panels of the image, respectively. HereCSe = 0.75VAi, VAe =
0.25VAi, CSi = 0.5VAi for photosphere region andCSe = 0.25VAi,
VAe = 2.5VAi, CSi = 0.5VAi for solar corona. Sausage (m=0), kink
(m=1) and fluting (m>1) modes are shown.m = i, j : the i refers
to the mode (sausage, kink, etc.) andj refers to the branch of the
zeroes of eigenfunctions.

Fig. 6: The normalized phase-speed(Vph) of the sausage mode
(m=0) and thekink mode (m=1) as function of(kr0) for the photo-
sphere(i.e VAi > CSe > CSi > VAe) are shown at the left and right
panels, respectively. The sound and Alfv́en speeds are the same as
in Fig. 5.
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