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The oscillatory modes of mmagnetically twisted compressible flux tube embedded in a ogpressible magnetic environmenfre investigated in cylindrical geometry. Tgeneral dispersion equationn terms of
Kummer’s functions is obtained for the approximation of wead uniform internal twistThe sausage, kink and fluting modesre examined by means of the derived exact dispersion egudthe solutions of this
dispersion equation are found analytically for short amjlavavelength limits under plasma conditions represestati the solar photosphere and corona. Numerical solufamthe phase velocity of the allowed
eigenmodes are obtained for a wide range of wavenumbersaagmhg magnetic twist. Our results generalize previoussstal and widely applied studies of MHD wave oscillatiomsnagnetic loops with no twist.
Applications to solar magneto-seismology are discussed.
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The plasma motion is governed by the system of single-fliméakised,| where) is an arbitrary constant anflx) is an unknown function. If we

ideal-MHD equations for a compressible magnetized plas@@g.g. [1]): | choose\ = —1/2, the equation for total pressure takes the form " e [ ]
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where, in a cylindrical coordinat K= +5 (I+ma), p= 5 (10) [ twisted tube (V4;, = 0.1) as function of kr for casesVy, > Vy;
s 4 4 System with the equilibrium stat | " _ o | | and V4; > V4, are shown at the left and right panels. The surface
inhomogeneous in the radial dj-The solutions are known as the linear combination of Whettdknctions: and are shown. Note the change of character, from

rection only, & = (&8, &) IS body to surface wave, atkrg = 0.5 (left panel) and kry = 1 (right

the Lagrangian displacement veg- f(x) = O My () + C5 Wi (), (11) panel).

tor denoting perturbations from iy y _ . .
whereC| andC’ are arbitrary constants. The solutions can also be written

e o e e}y the form of Kummer functions [3]; P e —— |
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y netic permeability,p is the per- e
turbation of plasma pressure a(TCUsing the functions (12), (13) and solutions (8), (11), w&aab V
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netic field. The unperturbed staje PiT = Cfe_%X%M (a,b,x) + C§e_§x% U (a,b,x), (14) O
| and the geometry of the Implg- Fig. 4: The normalized phase-speed/;,) of the m=1 modes in a
Fig. 1: The geometry of the mented model is shown in Fig.1.where 242 twisted tube (Vi;,, = 0.1) as function of (k) for casesVy, > Vi)
problem. The straight vertical The radius of the tubey, and a=2(1—-a)—— Cb=1+m. (15)| and Vi > V.. The surface and are shown. Note the
magnetic flux tube is twisted uni- all dependent variables inside tfe 2 AknE1/? 1 .

. , . . . . . of modes aroundVy;, and kink mode which have V};, — oo
formly. At the boundary of the tube have index, while quanti-| Note, In the center of the flux tube (= 0) the solution of Equation (9
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tube there is a jump in the mag- ties outside the tube are denotpdnust be finite, therefore, the constali is set equal to zero. After sone
netic twist. with indexe. algebra, we arrive at the solution for the internal Lagranglisplacement St TR ] ol T T T
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the solution obtained by [4]: Fig. 5: The normalized phase-speed/,) as function of (kr() un-

Here, the second term In the brackets represents magnesisuype and th¢ der photospheric(i.e Vi; > Cg. > Cs; > Vi) and under coronal
third term derives from magnetic tension due to the azimutbeponent per = Colm(megr) + C5 Km(meor), (17)| conditions (L.eVy, > Vy; > Cs; > Cs,) are shown at the left and
of the equilibrium magnetic fieldB;,,). We assume that the kinetic prels- Sor = O3, (megr) + CK,, (megr), (18) | nghtpanels of the image, respectively. Heres, = 0.75Vx;, Viae =
sure(pyg) is constant (though not equal to zero) inside the flux tubaviBr 0.25V1, Csi = 0.5V} for photosphere region andCg. = 0.25Vy;,
is not included in the present analysis. The particular céseuniformly | whereC; andC are arbitrary constants arig,, K, are modified Bessel Ve = 2.5Va;, Csi = 0.5V} for solar corona. Sausage (m=0), kink

twisted equilibrium magnetic fieldBg(r)), of the form: functions of the first and second kind of orderand (m=1) and fluting (m>1) modes are shownm = ¢, j : the i refers
5 9 N 1.9 59 ) to the mode (sausage, kink, etc.) and refers to the branch of the
Bo(r) { (0, Ar, Byg), 7 <70, (5) m2. — (k7Cog — w)(K7Vip — ) zeroes of eigenfunctions.
r — 0= .
0 <07 07 Bez)7 r > T, ’ (‘/GQA + ng)(kZCgT — w2> 0T T : 0T f
IS considered, where Because, for the external environmemnty andé., must be finite at infinity UM

07F | 07F

(r — o0), the constant’y is set equal to zero. The dash denotes the defiva-
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The dispersion equation and solutions | N ***************************
in order to satisfy the pressure equilibrium governed bydfign (4). Here R — S S — ‘,
A and, B are arbitrary constants. This choice of magnetic field mayerel »1ving boundary conditions to the inside and outside tiohs, yields . e S S
sent solar atmospheric flux tubes with observed weakly égiseld com-| 4 required general dispersion relation:
ponents (see [2]). Fig. 61 The normalized phase-speedV,,,) of the sausage mode
. .. Do Em(moero) _ A% 5y 2 (1—a?) (m=0) and thekink mode (m=1) as function of(kr) for the photo-
Solution inside the flux tube “™Moe K, (moero) I U Um(1—a)+2x0M ' (a,b,x0) / M (a,b,%)) sphere(i.e Vy; > Cq, > Cg; > Va,) are shown at the left and right
ATter some algebra the set of Equations (1)-(3) may be raflicmne Thezczlash denotes the derivative of amKummerfunction evedLal: — . pan_els, respectively. The sound and Alfen speeds are the same as
equation for the internal Eulerian perturbation of totadssurep; with I S | nFig. 5.
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5 w? b 1A*n? mensionless wavenumbek, for casesV/ 4, > V4, (left panel) and | National Bureau of Standards, Washington, 1964.
(V2 + C2)(w? —wl) 12D2E2(1 — o2)2 Vie < Vy; (right panel) in an incompressible medium We have | 4. Edwin, P.M., Roberts, B. Solar Phy88§, 179, 1983.
LA2,)2 taken p;y = p.o and depict the solution to the dispersion relation | ©- Bennett, K., Roberts, B., Narian, U. Solar Phi83 41, 1999.
o’ = i for the sausage (m=0), kink (m=1) and fluting (m>1) modes. 6. Ercelyi, R., Fedun, V. Solar Phy=238 41, 2006.
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