Perspective

PCCP

ab initio

=8

o

o

=]
J

800

v
W

[}
(=3
o
.
-

T I
6.57 8.45

4 2 2
‘ Iwc' =l\|/k=0,vb(p)l 10

() Amplitudes of wave functions
in arbitrary units

2 2
I\I/pl =I‘Vk=o,vb(p)l _

x/nm

0, v,)/hcl/ em”

N7 B O o (2 iy v [ e e L . M)

Ka

S

o

s
1

[E(k

N

=3

S
Laoavnataas by gy

44/ Debye
o

30
P [degree

40 50 60 70

Fig. 3 The central panel with parts a and b of this figure is taken from our recent PCCP paper.? The solid black line represents the dependence
of the potential energy on the bending coordinate p, obtained by fitting the Generalized Semi-Rigid Bender Hamiltonian (GSRB) to our experimental datz.
The solid black dots are the calculated ab initio values. The probability densities leIZ and [P [? for v, and K, = O are given in both polar and

Cartesian coordinates for all observed values of v,. We plot |#.|2 in cartoons for each wave function indicated in the central panel, and obtain a feeling
for the stationary state probability density in the Cartesian representation. The champagne bottle potential is plotted in golden color. We clearly s

that |¥|* has a maximum at the origin (i.e. linearity) as soon as we have reached the classical monodromy point which lies slightly below the energy of

y O

the v, = 3, K, = O vibrational state. Part b of the central panel depicts the dependence on p of the ab initio calculated electric dipole moment

components p, and .

for the product wave function,

lpk,v(p7 X) 55 \/Lz—neikzl//k,v(p)v (3)

where k is the quantum number associated with rotation
about the z-axis while v corresponds to the large-amplitude
bending quantum number. (Note: This corresponds to the
definition of v for a bent asymmetric rotor molecule, or the
radial quantum number n when using polar coordinates for a
linear molecule.) The Euler angle y describes the rotation about
the a-(or z-) axis with the smallest moment of inertia. p is the
large amplitude bending coordinate defined in Fig. 1 which
displays the equilibrium structure of NCNCS in the principal
axis system.

In the second step the product basis functions ¥y, (p, 1) of
eqn (3) are multiplied by “end-over-end” rotational factors, that
is by the 0, @ parts, Sym(0, @), of the normalized symmetric

rotor wave functions. This gives the full Semi-Rigid Bender
(SRB) basis functions of eqn (14) of Bunker and Stone,?°

l1UJ,k,m,v(97 @Dy x5 P) o j,k,m,(07 QD) q/k,v(py X)
= |[Jkm)yy.,(p),

where | Jkm) are normalized symmetric top wave functions and
where the () are independent of the sign of k since eqn (29
in ref. 2 depends on k*. The GSRB Hamiltonian for all 4 degrees
of freedom was then diagonalized in this basis yielding wave-
functions and level energies.

The GSRB fitted potential energy function for the large
amplitude bending motion is shown in the center of Fig. 3.
Also shown, by the round dots, are the ab initio potential energy
values. The GSRB potential energy function includes the varia-
tion with p of the zero-point energy of all the small-amplitude
vibrations and is not expected to be identical to the ab initio
function.




