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Abstract: A derivation of the general wave-mechanical Hamiltonian for non-
linear molecules is presented. It is based on the transformation of proper 
classical (Hamilton) momenta into their wave-mechanical counterparts by 
means of the Podolsky Transformation in its original form. The result is essen-
tially identical to that obtained by Watson in his milestone paper (J. K. G. 
Watson, Mol. Phys. 15 (1968) 479). While not so elegant as that of the original 
reference, the way proposed in the present study is conceptually much simpler. 
This procedure could also be applied to other types of molecular Hamiltonians.  

Keywords: Watson’s molecular Hamiltonian; classical kinetic energy; Podolsky 
transformation. 

INTRODUCTION 

Among the papers I have been forced to understand, there is hardly one I 
found so difficult as Watson’s milestone study1 in which he simplified the vibra-
tion–rotation Hamiltonian for polyatomic molecules, originally derived by Wil-
son and Howard.2,3 Just to reproduce five pages of this paper, I needed a whole 
month, and in order to decipher the extremely complicated formulae in con-
densed Levi-Civita form, I penned several hundreds of leaves. It seems that other 
people also had similar problems. I found once in a very serious paper the sen-
tence: “If the Watson’s Hamiltonian is correct …”. Even Watson himself wrote 
in his paper, “The simplicity of the final result suggests that it should be obtain-
able by a less complicated calculation than that described here, I have, however, 
been unable to find a more direct derivation.” As another illustration of the com-
plexity of this study can serve the fact that as Watson needed two years to apply 
the same procedure for deriving the Hamiltonian for linear polyatomic mole-
cules,4 some researchers questioned his results,5 and that Watson’s answer to this 
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criticism came only seven years later.6 Thus, the goal of the present study was to 
attempt to derive Watson’s Hamiltonian in a less elegant but simpler, or at least 
more straightforward, way. 

Separation of variables represents an unavoidable step that precedes every 
practical ab initio handling of the molecular Schrödinger еquation, and/or a treat-
ment of the dynamics of molecules. Experimental spectroscopy indicates that 
molecular spectra can be understood in a good approximation if the existence of 
several more or less loosely coupled motion modes is supposed. This concept is 
supported by theoretical considerations. A „normal“ molecule has a relatively 
rigid nuclear skeleton, i.e. the nuclei are held at nearly constant mutual distances. 
More precisely, the changes of these distances (molecular vibrations) are small 
compared to the average values of the distances. These average distances deter-
mine the equilibrium structure of the molecule. The electrons can be imagined as 
the constituents of an electron cloud tied to the nuclear skeleton. As a whole, the 
molecule translates and rotates in space. 

There are two main approaches for construction of the wave-mechanical 
Hamiltonian.7 In the “first” one (a), the wave-mechanical operator is first derived 
in terms of Cartesian derivatives and subsequently, these derivatives are replaced 
by the derivatives with respect to appropriately chosen (typically curvilinear) 
coordinates, or by some impulses (momenta) not conjugate to any coordinates. 
This can be represented schematically as  

        ˆ ˆ ˆ ˆX X qE X H P H P H P    (1)  

where ˆ /XP i X    , but in general, ˆ /qP i q    . In the “second” approach 
(b), one derives first the classical Hamiltonian in terms of (classical) impulses 
conjugate to chosen non-Cartesian coordinates and only after that are these 
impulses replaced by the corresponding wave-mechanical operators:  

        ˆ ˆq qE X E q H P H P    (2) 

This alternate way was invented by Podolsky and it is called the Podolsky 
transformation.8 Sometimes, Hamiltonians are even derived in terms of momenta 
not conjugate to any coordinates (such momenta are not “true momenta” in the 
sense of the Hamilton formalism).1,3,4 

WILSON–WATSON’S HAMILTONIAN 

Only the construction of the kinetic energy part of the Hamiltonian will be 
considered. The transformation of the potential energy is trivial since it only 
depends on the distances between the particles (electrons and nuclei) and these 
are invariant to changes in coordinate frames. 

An isolated polyatomic molecule composed of S   2  nuclei SBA ,...,, , 
and N  electrons, N,...,,...1  , with non-linear equilibrium geometry, is consi-
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dered and handled in the non-relativistic approximation. When summing over 
electrons, Greek letters, , ,...  will be used. The nuclear masses will be denoted 
by ,...,A Sm m , and the electron mass by em . The total mass of the nuclei is 
denoted by nM , and the mass of the molecule by M  ( n eM M Nm  ). One 
starts with a space-fixed coordinate system ( SFS ). A disadvantage of this is that 
all the molecular motion modes are mixed in it. For this reason, the Hamiltonian 
is transformed to the coordinate system with the axes parallel to those of the 
SFS  and the origin coinciding with the center of mass of the molecule (includ-
ing both the nuclei and electrons, MCMS ). This transformation serves to sepa-
rate off the translational motions of the molecule. A consequence of the intro-
duction of three center of mass coordinates is that one remains with 3)(3 NS  
linearly independent particle coordinates in the MCMS . Thus a set of redundant 
coordinates, say those of the nucleus A , is eliminated, and they are expressed as 
linear combinations of the coordinates of the other nuclei ( SB,..., ).  

The MCMS  has two drawbacks: First, in the MCMS , the coordinates of 
the nuclei and electrons are (indeed weakly,  /e nm M ) coupled. Secondly, con-
trary to the situation with the nuclear skeleton, which has at any moment a defi-
nite structure (it determines the „geometry“ of the molecule), the „electron 
cloud“ cannot be associated with any simple geometric structure. For these 
reasons, the positions of all particles are related to the center of mass of the 
nuclei (NCMS). Since the axes of all three mentioned coordinate systems are 
mutually parallel, the transformation of the kinetic energy expressions is rela-
tively simple and can be realized separately for YX ,  and Z  coordinates. The 
position vectors of the nuclei in the NCMS will be denoted by  , ,...,A B SR R R  
and that of the μth electron by R  ( 1,2,..., N  ). 

The classical kinetic energy in the velocity form in the NCMS is:7  
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 (3) 

where d / dK KX X t  etc. are time derivatives of the coordinates. The corres-
ponding wave-mechanical operator is:  
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(4) 

Since the translational motion is of no interest, from now on, as a rule, the 
terms „space-fixed coordinate system“ and „nuclear center of mass system“ will 
be used as synonyms. In this way, the distinction between these two systems 
(having parallel corresponding axes), on the one hand, and the molecule-fixed 
coordinate system ( MFS ) that follows the rotation of the molecule (this is just 
going to be introduced), on the other hand, will be more clearly expressed.  

The form of the kinetic energy operator (4) is not yet optimal because in it, 
the vibrational and rotational coordinates of the nuclei are completely mixed 
(they are hidden in Cartesian coordinates). Thus, the rotational motion of the 
molecule will now be separated, as well as possible, from vibrations of the nuc-
lei. In order to accomplish this, a coordinate system is introduced with the origin 
in the NCMS  but with the axes , ,  and x y z  differently oriented than those of the 
SFS / NCMS . The unit vectors along the x-, y- and z-axes are denoted by ji


,  

and k , and the unit vectors along the space-fixed axes ,  and X Y Z  by 
,  and I J K . The position vector of the i th particle in the SFS  will be denoted in 

the general case (nucleus or electron) by kR . Its components are ,k kX Y  and kZ . 
For the same position vector in the MFS, the symbol kr will be used. The 
components of kr  are xk, yk and zk. Since both the coordinate frames have the 
same origin, k kR r , that is: 

 k k k k k k k kR X I Y J Z K x i y j z k r        (5) 

For derivation of the classical Hamiltonian and the angular momentum, the 
time derivative of this (these) vector(s) is (are) required. One can differentiate 
both in the SFS  and MFS . When the differentiation is realized by an observer 
in the SFS, symbols like ,k kR r  will be used and for differentiation within the 
MFS, ,k kR r . Differentiating in the SFS, kR , i.e., the radius-vector with the 
components along the SFS -axes, one obtains: 

    k k k k k k k k k kR X I Y J Z K X I Y J Z K X I Y J Z K          (6) 

because the unit vectors , ,I J K  do not change in time ( 0, 0, 0I J K   ). 
However, if the same vector is differentiated in the SFS , but expressed in terms 
of the components along the MFS -axes, it has to be taken into account that for 
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the observer in the SFS  not only do the components of the vector ( , ,k k kx y z ) 
change, but also the unit vectors , ,i j k . Thus:  

    k k k k k k kr x i y j z k x i y j z k       (7) 

On the other hand, if the same vector is differentiated within the MFS , one 
obtains: 

 
  
                

k kk k k k k k k kr x i y j z k x i y j z k x i y j z k  (8) 

The expression on the right-hand side follows from the fact that for the 
observer in the MFS, the unit vectors , ,i j k  are at rest ( 0  i j k ), and in the 
non-relativistic approximation, time is the same in all coordinate frames, i.e., 

k kx x  etc., as for all scalar quantities. 
The MFS is chosen so that it rotates together with the nuclear skeleton of the 

molecule, i.e., the coordinate system itself takes over (as completely as possible) 
the molecular rotations, while (ideally) the only kind of motion of the nuclei 
within it represent vibrations. The orientation of the MFS-axes with respect to the 
axes of the SFS is usually defined by means of Euler angles , ,   . They are 
certain functions of the nuclear coordinates. In this way, the number of linearly 
independent nuclear coordinates in the MFS will be reduced to 63 S . Let us 
assume that the coordinates of nucleus B are eliminated by the relations 

( ,..., )BB C Sf x z  , where , ,x y z  . Besides, there are N3  electronic coordi-
nates, , ,x y z   , ..., , ,N N Nx y z . Thus, there are the following two sets of 
  33  NS  coordinates: a) NCMS: ,..., ,B SR R 1,..., ,..., NR R R  and b) MFS: 
, , , ,...,Cr   1, ,..., ,...,S Nr r r r . They are related by:  
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 (9) 

and, reversely, 
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 (10) 

where the coefficients Xx =[ xX =  cos ,i I x X  ], Xy =[ yX =  cos ,j I y X  ] 
expressed in terms of the Euler angles , ,    are:  

 

cos cos cos sin sin , sin cos cos cos sin ,
sin cos
cos cos sin sin cos , sin cos sin cos cos ,

sin sin
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(11) 

The transformations (10) look completely symmetric with respect to the 
nuclei and electrons, but in fact, they are not. Since the coefficients ,...,xX zZ   
(via the Euler angles , ,   ) are determined (solely) by the positions of the 
nuclei, the relationship between electronic coordinates in the SFS  and MFS  is 
just an orthogonal linear transformation involving constant coefficients. On the 
other hand, the transformation of the coordinates of the nuclei is not linear. 

The number of linearly independent nuclear coordinates in the MFS, 63 S , 
is just necessary and sufficient to define unambiguously the form of the nuclear 
skeleton. In praxis, the Cartesian coordinates , , ,..., , ,C C C S S Sx y z x y z  of the nuc-
lei will not be used but rather some “internal coordinates”, which determine the 
positions of the nuclei with respect to one another. These can be chosen in a pure 
geometric way, such that they represent the bond lengths, the angles between 
bonds, etc. In this paper, however, instead of them, appropriate linear combi-
nations of the displacements of the Cartesian coordinates of the nuclei from their 
equilibrium positions measured in the MFS , the “normal coordinates” 

1 2 3 6, ,..., SQ Q Q  , will be used.  
It is easy to show that the form of the electronic part of the kinetic energy 

operator (4), when carried out via the “first way” is not changed during the 
transition to the MFS, i.e., that it becomes: 
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The invariance of the electronic kinetic energy operator is a consequence of 
the fact that the transformation matrix (9) is only a function of the nuclear 
coordinates. The transformation of the nuclear kinetic energy operator is much 
more complex. For example, the first derivative with respect to the coordinate 

KX  transforms into: 

 

3 6

1

1

S
I

K K K K K Ii
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     
          





 (13) 

Nothing on the right-hand side vanishes automatically. Not only the Euler 
angles and normal coordinates, but even the electronic coordinates , ,  x y z , 
via the elements xX ,... of the transformation matrix in Eq. (9) are functions 
(moreover, very complicated) of the coordinate KX . The last sum on the right-
hand side of Eq. (13) will introduce into the expression for / KX   also deri-
vatives of the electronic coordinates in the MFS. The same conclusions hold for 
the second derivatives. This means that the transformation whose role was to 
separate the rotations from vibrations introduces a coupling between nuclear and 
electronic coordinates in the kinetic energy operator. The above analysis of the 
structure of Eq. (13) shows that a derivation of the expression for n̂T  in the 
MFS  in the way applied for transformation of êT  into (12) would be very dif-
ficult. For this reason, it is more convenient to use instead the “second way” (b).  

From now on, the derivation presented in Wilson’s book3 is closely followed 
It is easy to show that the classical expression for the kinetic energy of the nuclei 
from Eq. (3) equals: 

    2 2 21 1
2 2

S S
n K K K K K K K

K A K A
T m R R m X Y Z

 

       (14) 

under the condition: 

 0
S

K K
K A

m R


  (15) 

The following notations are used: KR  is the position vector and KR  the 
velocity vector of the nucleus K  in the SFS (more precisely, in the NCMS) i.e., 
the vector whose components are measured along the axes of the SFS; Kr  is the 
position vector, and 0

Kr  the equilibrium position vector in the MFS; Kr  repre-
sents the (vibrational) displacement of the nucleus K with respect to its equilib-
rium value and Kr  is the velocity of the nucleus measured in the MFS. The time 
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derivatives of the radius-vector Kr  as measured in the SFS and in the MFS 
rotating with an angular velocity 


, respectively, are connected by the relation: 

   K K Kr r r  (16) 

The first term on the right-hand side describes the change in time of the 
vector Kr  within the MFS, and the second term the effect of rotation of this 
system on the change of Kr  as measured in the SFS. As stated above, the orien-
tation of the MFS is determined by the values of the Euler angles ,   and  , 
chosen in such a way that the relative displacements of the nuclei with respect to 
one another (vibrations) be minimally coupled with the rotations of the nuclear 
skeleton. Note that the components of the angular velocity, , ,x y z   , are not 
„true“ velocities in the sense that they do not represent time derivatives of the 
corresponding coordinates – they can be expressed as linear combinations of time 
derivatives of the Euler angles. 

Complete separation of the vibrational from the rotational coordinates would 
be possible if the “vibrational angular momentum”:  

 


 
   

 

S

v K K K
K A

J m r r  (17) 

in the MFS were vanishing. It turns out, however, that the three scalar equations, 
0, 0,vx vyJ J   and 0vzJ   do not enable the determination of the values of 

,  , and   such that the corresponding vectors { Kr } and { Kr } fulfill the con-
dition 0vJ  . The best that can be done in trying to separate vibrations from 
rotations is to replace the condition 0vJ   by: 

 0( ) 0


 
S

K KK
K A

m r r  (18) 

The quantity on the left-hand side of (18) differs from (17) in that the ins-
tantaneous position vectors Kr  (which appear in vJ ) are replaced by their equi-
librium counterparts, 0

Kr  – the difference between them tends to zero when the 
nuclei undergo small-amplitude (“infinitesimal”) vibrations. Since the vibrations 
are commonly characterized by small amplitudes, the condition (18) ensures, as a 
rule, good separation of the rotations from the vibrational degrees of freedom. It 
is easy to show that expression (18) can be obtained by differentiating the Еckart 
condition:9 

 0( ) 0
S

K KK
K A

m r r


   (19)  

Inserting the expression (16) for the nuclear velocity in (14), replacing Kr  by 
0 KKr r  , taking into account (19), and expanding the vector quantities into their 
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scalar components, one obtains for the classical kinetic energy of the nuclei the 
expression: 
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        

 





 

 

  

      

      

 
      

 



 

 

S
n K K K

K A

xx x yy y zz z xy x y yz y z zx z x

S S
K Kx K K x y K K y

K A K A
S S

K Kz K K z K
K A K A

T m R R

I I I I I I

m r r m r r

m r r m r

 (20) 

where: 

 
     2 2 2 2 2 2, , ,

, ,

S S S

xx K K K yy K K K zz K K K
K A K A K A

S S S

xy yx K K K yz zy K K K zx xz K K K
K A K A K A

I m y z I m z x I m x y

I I m x y I I m y z I I m z x

  

  

     

        

  

  

 (21) 

are the instantaneous moments and products of inertia. Note that these quantities 
are not constant but are functions of the nuclear positions, which change in the 
course of vibrations.  

The expression (20) for the kinetic energy of the nuclei consists of three 
parts. In the first one appear the moments and products of inertia and the 
components of the angular velocity vector  , and this part describes the rota-
tional motion of the molecule as a whole. The last term on the right-hand side of 
(20) involves (besides the nuclear masses) only the velocities of the nuclei 
moving in the MFS, and thus represents the vibrational kinetic energy. In the 
middle term appear both the angular velocity and velocities within the MFS; it 
describes the coupling between the rotations and vibrations. The appearance of 
this term is a consequence of defining the orientation of the MFS axes by means 
of the conditions (18), instead of equating (17) to zero. 

The most convenient way to describe the molecular vibrations is based on 
the use of the normal coordinates, 1 3 6,..., ,...,i SQ Q Q  . Actually, their form is not 
known at this stage, because they can be determined only after the introduction of 
the Born–Oppenheimer approximation10 and solving the electronic Schrödinger 
equation at various nuclear arrangements around the equilibrium molecular 
geometry. Only the fact that these coordinate do exist can be used at this 
moment. By summing, the normal coordinates are denoted by lowercase Latin 
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subscripts ji, . They are connected with the Cartesian displacement coordinates, 
, ,K K Kx y z   , by the linear relations: 

 

3 6 3 6
, ,

1 1
3 6

,
1

, ,

, 1,...,

S S
K K xK i i K K yK i i

i i
S

K K zK i i
I

m x l Q m y l Q

m z l Q K S

 

 





   

  

 



 (22) 

where the (constant) coefficients , , ,, ,xK i yK i zK il l l  are chosen such that the nor-
mal coordinates simultaneously reduce the expressions for the kinetic energy and 
the quadratic part of the potential energy of vibrations to the sums of quadratic 
terms: 

 
3 6 3 6

2 2

1 1

1 1,
2 2

S S
v ii i

i i
T Q V Q

 

 

    (23) 

Expressed in terms of the normal coordinates, the terms coupling vibrations 
with rotations are:  

 

3 6

1
3 6

1
3 6

1

( )

( )

( )



 



 



 

   

   

   

 

 

 

S S
KK K x i i

K A i
S S

KK K y i i
K A i

S S
KK K z i i

K A i

m r r Q

m r r Q

m r r Q

 (24) 

where:  

 

 

 

 

3 6 3 6
, , , ,

1 1

3 6 3 6
, , , ,

1 1

3 6 3 6
, , , ,

1 1

,

,

S S S
xi yK j zK i zK j yK i j jji

j K A j

S S S
y

i zK j xK i xK j zK i j jji
j K A j

S S S
zi xK j zK i yK j xK i j jji

j K A j

l l l l Q Q

l l l l Q Q

l l l l Q Q







 

  

 

  

 

  

 
    

  

 
    

  

 
    

  

  

  

  

 (25) 

are linear combinations of the normal coordinates. Inserting (24) into (20), one 
obtains: 
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2 2 2

3 6 3 6 3 6 3 6
2

1 1 1 1

1 1 1
2 2 2

1
2

        

  
   

   

     

         

n xx x yy y zz z xy x y yz y z zx z x

S S S S
x i i y i i z i i i

i i i i

T I I I I I I

Q Q Q Q
 (26) 

Equation (26) is the kinetic energy of the nuclei in terms of the coordinates 
and velocities. 

In order to obtain the Hamiltonian, the velocities , ,x y z    and iQ = iQ  
have to be replaced by impulses. The impulse, iP , canonically conjugate to the 
normal coordinate iQ , is: 

 n
i i i x i y i z

i

TP Q
Q

  


     


 (27) 

First, in expression (26), the components of the angular velocity   are replaced 
by the components of the nuclear angular momentum R : 

  ( ) ( ) ( )
  

        
S S S

K K K K K K K K K
K A K A K A

R m r r m r r m r r  (28) 

along the axes of the MFS : 

 

3 6

1
3 6

1
3 6

1

,

,

.

S
n

x xx x xy y xz z i i
xi

S
n

y yx x yy y yz z i i
yi

S
n

z zx x zy y zz z i i
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TR I I I Q

TR I I I Q

TR I I I Q

  


  


  















     




     




     









 (29) 

When dealing only with the nuclei, as now, these quantities equal the com-
ponents , ,x y zJ J J  of the total angular momentum (also involving electronic 
contributions). Using Eq. (27), one derives  

 
' ' ' ,
' ' ' ,
' ' ' .

x x xx x xy y xz z

y y yx x yy y yz z

z z zx x zy y zz z

R p I I I
R p I I I
R p I I I

  

  

  

   

   

   

 (30) 

where: 

 
3 6 3 6 3 6

1 1 1
, ,

S S S
x i i y i i z i i

i i i
p P p P p P

  

  

         (31) 

are “vibrational angular momenta”, and the quantities, defined as: 
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3 6 3 6 3 6
2 2 2

1 1 1
3 6 3 6 3 6

1 1 1

' , ' , ' ,

' , ' , ' ,

S S S
xx xx yy yy zz zzi i i

i i i
S S S

xy xy i i yz yz i i zx zx i i
i i i

I I I I I I

I I I I I I

  

  

  

  

        

          

  

  

 (32) 

reduce, in the case of small-amplitude vibrations, to the instantaneous moments 
and products of inertia. To eliminate from the expressions (26) and (28) the com-
ponents of the angular velocity, the transformation inverse to (30) is required: 

 
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ).

x xx x x xy y y xz z z

y yx x x yy y y yz z z

z zx x x zy y y zz z z

R p R p R p
R p R p R p
R p R p R p

   

   

   

     

     

     

 (33) 

The coefficients  =   ( , ,x y    or z) are elements of the matrix 
inverse to the matrix with elements 'I  .   are only the functions of the 
normal coordinates. Using the relations (27)–(33), expression (26) can be trans-
formed into: 

 
3 6

2

1

1 1( )( )
2 2    

 




  

     
z z S

n i
x x i

T R p R p P  (34) 

PODOLSKY TRANSFORMATION 

Equation (34) represents the classical expression for the kinetic energy of 
nuclei in terms of the momenta iP  conjugate to the normal coordinates, the 
vibrational angular momenta, , ,x y zp p p , and the nuclear angular momenta 

, ,x y zR R R . The construction of the corresponding wave-mechanical operator is, 
however, not trivial for two reasons. First, curvilinear coordinates (Euler angles) 
are being dealt with, and secondly, the momenta , ,x y zR R R  are (in general) not 
conjugate to any concrete coordinates. The first problem was solved by Podol-
sky.8 

Suppose that one has M generalized (in the general case non-Cartesian) 
coordinates, 1 2, ,..., Mq q q . In all cases of present interest, the classical kinetic 
energy will be homogeneous quadratic functions of generalized velocities: 

 1 2
1 1

1 ( , ,..., )
2

M M
mn M m n

m n
T T q q q q q

 

   (35) 

The coefficients mnT (= nmT ) depend, in general, on generalized coordinates. 
The relationship between the generalized velocities and the impulses conjugate to 
the coordinates 1 2, ,..., Mq q q  are: 
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 1 2
1

( , ,..., ) , 1,...,



  



M

n mn M m
n m

Tp T q q q q n M
q

 (36) 

The relations inverse to (36) are: 

 1 2
1

( , ,..., ) , 1,...,


 
n

n mn M m
m

q g q q q p n M  (37) 

where mn nmg g  are elements of the matrix inverse to the matrix { mnT }, 
1( )mn mng T . Inserting the expressions (37) for nq  into (35), one obtains the 

classical kinetic energy in impulse form:  

  1 2
1 1

1 , ,...,
2

M M
mn M m n

m n
T g q q q p p

 

   (38) 

If an attempt is made to construct the corresponding wave-mechanical 
operator by replacing the impulses in expression (38) with the corresponding 
operators, problems are encountered. Since the impulse operators do not in 
general commute with the coefficients mng  (because these depend on the coor-
dinates), it is not possible based on (38) to conclude which is the correct ordering 
of the quantities on the right-hand side. If one worked instead with Cartesian 
coordinates (or any other „rectilinear“ coordinates as, e.g., the normal coordi-
nates), the expansion coefficients would be constant, and since the impulse 
operators associated with different coordinates or particles commute, one would 
directly obtain the wave-mechanical kinetic energy operator as:  

 
2 2

1 1 1 1

1ˆ ˆ ˆ
2 2

M M M M
mn m n mn

m nm n m n
T g p p g

q q
   


  

 
   (39) 

Podolsky showed that it is nevertheless possible, without intermediate use of 
Cartesian coordinates, to construct the wave-mechanical Hamiltonian that corres-
ponds to the classical expression (38) if this classical expression is first appro-
priately symmetrized:  

 1/4 1/2 1/4

1 1

1
2

M M
m mn n

m n
T g p g g p g

 

   (40) 

This leads to the operator in the form: 
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1/2 1/21/4 1/2 1/4

1 1

2
1/2 1/21/4 1/2 1/4

1 1

1ˆ ˆ ˆ
2

2

M M
q m mn n q

m n
M M

q mn q
m nm n

T s g p g g p g s

s g g g g s
q q

 

 

 

 

  
  

  

   
   

   





 (41) 

By g is denoted the determinant with elements mng , and qs  is a con-
veniently chosen weight factor (in general a function of the coordinates) of the 
volume (integration) element, dV 1 2... Mdq dq dq 1

Mq nns dq  . In the expression 
(41), the operators act onto everything on their right-hand sides (including, of 
course, the wave function). The operator (41) can be transformed so that the 
differential operators only act on the wave function: 

 

     
2 2

2 1 0

1 1

2

1 1

ˆ ˆ ˆ ˆ
2

2

M M
mn

m nm n
M M qmn mn

n q n mm n

T T T T g
q q

sg g
q s q q

 

 


     

 

   
          



 

 (42) 

 

2 2

1 1
2

2

1{
8

2 }

M M
mn

mn
n n m nm n

q q q qmn mn
mn

q n m m n m nq

g g gg
g q q q q

s s s sg gg
s q q q q q qs

 

   
   

    

    
          


 

Note that the kinetic energy operator in curvilinear coordinates (unlike the 
operator in Cartesian coordinates, which is a homogenous quadratic form of 
derivatives) also involves terms linear in derivatives and a constant (i.e., not 
containing any derivatives) term. Both the linear and constant terms are com-
pletely determined by the expansion coefficients of the quadratic part. In a spe-
cial, but quite common case, when 2g J   and qs J , where J  is the Jacobian 
of the transformation from Cartesian into non-Cartesian coordinates,  0ˆ 0T  . 

The Podolsky transformation in its original version covers the cases when all 
momenta are conjugate to the corresponding, in general curvilinear, coordinates. 
However, sometimes it is more convenient to use the momenta, such as the 
components of the angular momentum, which are not conjugate to any coordi-
nates. These quantities are called quasi-momenta. This topic was investigated by 
Wilson and Howard2,3 and later more generally by Watson;1,4 they showed that 
the wave-mechanical Hamiltonian could be expressed in terms of the operators 
corresponding to quasi-momenta, provided that some special conditions are ful-
filled.  

__________________________________________________________________________________________________________________________

2013 Copyright (CC) SCS

Available online at shd.org.rs/JSCS/



 WAVE-MECHANICAL HAMILTONIAN FOR NON-LINEAR MOLECULES 1949 

 

In the present case, the quasi-momenta are the quantities  R p  . It can 
be shown that the components of the total angular momentum, , ,x y zJ J J , along 
the MFS  axes, being in the present case equal to the components of the angular 
momentum of the nuclei, , ,x y zR R R , are related to the impulses , ,p p p   , 
conjugate to the Euler angles: 

 , ,T T Tp p p  
 

  
  
 

 (43) 

by:7,11  

 

cos sin cot cos ,
sin

sin cos cot sin ,
sin

  

  




  




  



      

     



x

y

z

J p p p

J p p p

J p

 (44) 

Note that the relations (44) are valid independently of whether the electronic 
coordinates are related to the SFS or MFS, whereas the expressions on the right-
hand side equal to , ,x y zR R R , respectively, are only valid when the electronic 
coordinates are left in the SFS. There were some reasons to prefer up to now the 
symbols , ,x y zR R R ; but from now on, we skip to , ,x y zJ J J . It turns out that 
the transformations (43/44) fulfill the conditions required for application of the 
generalized Podolsky transformation. The volume element at the integration of 
the wave functions will be 1 3 6sin ... SdV d d d dQ dQ         . Therefore, the 
wave-mechanical operator for the kinetic energy of nuclei, analogous to the 
general expression (41), is: 

 

   
1 1 1
4 2 4

1 1 13 6
4 2 4

1

1ˆ ˆ ˆˆ ˆ
2

1 ˆ ˆ
2

z z
n

x x

S
i i

i

T J p J p

P P

    

 

   

  



 






  
    

  

  
  

  

 



 (45) 

where the wave-mechanical operators Ĵ  and p̂  ( , ,x y z  ) are obtained by 
replacing in the expressions (44) and (31), the classical impulses ˆqp  
( , , , )iq P    by the operators /i q   . (Watson4 claimed that this did not in 
general hold and that in the present case the correct result was obtained thanks to 
“a more-or-less fortuitous cancellation” of some terms. I find this statement a 
little bit severe; the mentioned fortuitous cancellation is actually a direct con-
sequence of the proper choice of the volume element dV ). 

Watson1 showed that the expression (45) could be simplified. He derived 
certain commutation relations, such as: 
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 ˆ , 0
z

x
p 






     (46) 

which enabled Eq. (45) to be rearranged into:  

 

   

  

3 6 2
2

1

3 6 2
2

1

1 1ˆ ˆ ˆ ˆˆ ˆ
2 2 8

1 1ˆ ˆ ˆˆ ˆ
2 2 8

     

  

     

  

 

 



   



   

  
      

  

  
     

  

   

   

z z S z
n i

x x i x

z z S z

i
x x i x

T J p J p P

J p J p P

 (47) 

The term  2 / 8     can be handled as an additional part of the 
potential; however, unlike the common potential terms, it depends on the nuclear 
masses and thus, it is not isotopically invariant.  
TRANSFER OF ELECTRONIC COORDINATES INTO A MOLECULE FIXED SYSTEM 

Now both the electronic (Eq. (12)) and the nuclear kinetic energy (Eq. (47)) 
operators, expressed in terms of the desired impulses/momenta, are available. Let 
us return, however, to Eq. (13) and the text following it: It was concluded that the 
transformed nuclear kinetic energy operator would be spoiled by electron vari-
ables but the operator (47) does not contain them. What has happened? The 
explanation is the following: the full classical kinetic energy was separated into 
two parts, which were handled in different ways. The electronic kinetic energy 
operator was constructed by method (a) (as defined in Introduction), and the 
kinetic energy operator by method (b). These two methods give identical results 
when applied to the full kinetic energy, but not always when the classical kinetic 
energy is separated into its constituent part. Thus, although we started with the 
classical kinetic energy for nuclei being equivalent to the corresponding quantum 
mechanical operator in terms of the NCMS variables, results identical to those 
that would have been derived if the problem had been handled using method (a) 
were not obtained. Since good reasons existed to avoid scheme (a) in the cons-
truction of the nuclear kinetic energy operator, now the electronic kinetic energy 
will be transformed also by method (b). Note that neither Wilson2,3 nor Watson1 
considered the transfer of the electronic variables into the MFS. This topic was 
handled in the classical paper by Van Vleck,12 nowadays very difficult to read 
due to the old-fashioned notation and definition of the Euler angles. A modern 
presentation can be found in the book by Brown and Carrington.13 The non-
appearance of the electronic coordinates in the operator (47) is explained as being 
a consequence of the tacit assumption that the angular momentum operator with 
the components , ,x y zJ J J , depending only on the Euler angles, does not act on 
the electron coordinates. However, if the electronic coordinates are defined with 
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respect to the MFS-axes, the indirect effect of the operators , ,x y zJ J J  on them 
(via the transformation coefficients expressed in terms of the Euler angles) has to 
be taken into account. The way chosen herein is more straightforward.  

Starting with the classical electronic kinetic energy in velocity form, defined 
in the NCMS  (see Eq. (3)): 

    
2

1 1 1

1
2 2
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e

e e
mT m R R R R
M   
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      (48) 

and substituting KR  by the expressions analogous to (16), r r r     , one 
obtains: 
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 (49) 

where: 
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 (50) 

are the electronic moments and products of inertia. (The physical sense of these 
quantities is less sound than that of their nuclear counterparts but they will not 
appear in any final result). Adding (49) to (26), one obtains the total classical 
kinetic energy of the molecule.  

The momenta conjugate to the electronic velocities have the form: 
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 (51) 

The electronic momenta associated with the components of the angular velo-
city are: 
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 (52) 

Taking into account (50) and (51), Eqs. (52) can be transformed into:  
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 (53) 

Thus, by summing , ,x y zR R R  and , ,x y zL L L , one has, based on Eq. (30):  
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 (54) 

Using the above relations and Eqs. (26), (27), (31) and (32), one obtains for 
the total kinetic energy: 
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 (55) 

Note that the electronic moments of inertia have disappeared. From Eq. (54), 
one has: 
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It follows: 
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The transformation inverse to (56) is: 
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Inserting the expressions (58) for , ,x y z    into Eq. (57), one obtains: 
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 (59) 

Thus, as predicted, the electronic coordinates (via the electronic angular 
momentum) have crept into the nuclear kinetic energy (first sum on the right-
hand side). This expression differs from the Wilson one, Eq. (34), due to pre-
sence of the last two terms representing the electronic kinetic energy, and by the 
substitution: 

 
,
,

   

   
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x x x x x

y y y y y

z z z z z

R p J L p
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R p J L p

 (60) 

in the rotation part of the kinetic energy. If the electron spin variables were also 
defined in the MFS , the expression on the right-hand side of Eq. (60) would be 
replaced by J L p S       ( , ,x y z  ). Since , ,x y zL L L  only involve the 
electronic variables, and the coefficients  only depend on the normal coor-
dinates, one could now proceed in the same way as Watson.1 The final result for 
the total kinetic energy operator would be analogous to (47): 
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The last two terms (sums) on the right-hand side of Eq. (61) represent the 
kinetic energy operator of electrons. The result (60) will be used to simplify the 
derivation of the total kinetic energy operator. Only nT , will be explicitly trans-
formed and later the fact that the components of the electronic angular mom-
entum, , ,x y zL L L , enter the kinetic energy operator in the same way as those of 
the vibrational ( , ,x y zp p p ) one will be used. 

DERIVATION OF THE HAMILTONIAN WITHOUT USE OF QUASI-MOMENTA 

Now several relations will be derived that will be required later. First, the 
time derivatives of the elements xX ,… can be expressed in terms of these 
elements and the time derivatives of the Euler angles: 
 cos ,..., sin                 xX xY zX yX zZ  (62) 

The time derivatives , ,i j k  are expressible in terms of the unit vectors , ,i j k  
themselves: 
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Using (62) and (63), one can rewrite Eqs. (6) and (7) in the form: 
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Based on Eq. (64), for the classical nuclear energy, the following expression 
was derived: 
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 (65) 

where by means of the relations (22), the Cartesian coordinates and their time 
derivatives are replaced by the normal coordinates and their derivatives: 
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 (66) 

These relations, when accompanied by the Eckart condition (17), are equi-
valent to (24). The momenta conjugate to the coordinates are:  
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 (67) 
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The transformation inverse to (67) is a concrete case of the relations (37) 
with nq = 1 3 6,..., SQ Q  , , ,   , and mp = 1 3 6,..., SP P  , , ,p p p   , where the 
coefficients mng  are: 
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 (68) 

with: 

 
, ,ix xx i xy i xz i iy yx i yy i yz i

iz zx i zy i zz i

     

  

             

      
 (69) 

The determinant of the matrix with elements gmn is: 
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 (70) 

The coefficients (68) determine the classical kinetic energy of the nuclei and 
at the same time the quadratic part of the corresponding wave-mechanical 
operator (42): 
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n mn S
m nm n

T g m n Q Q
q q

 (71) 

The linear (in derivatives) part of the wave-mechanical operator (42) corres-
ponding to the choice: 
   21 2 3, , sin , sinqg Q Q Q s     (72) 

where the symbol   stands for irrelevant constant factors, is determined by the 
second term on the right-hand side of Eq. (42), having in the present case the 
form: 
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 (73) 

The constant term (with respect to derivatives) from Eq. (42) reduces in the 
present case to: 
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 (74) 

Using the formulae (68), (31), (44), those for the quantities 2ˆ ˆ ˆx x xJ J J , 
ˆ ˆx yJ J , ˆ ˆy xJ J ,…, which can be derived starting with Eqs. (44), and rearranging, 
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one obtains for the wave-mechanical kinetic energy operator of the nuclei the 
expression: 
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The explicit form of  0T̂  is:  
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 (76) 

where:  
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are the quantities introduced by Watson. After some algebra, one finds that: 

  0 1 2 3 4T̂ U U U U     (78) 

where 1 2 3 4, , ,U U U U  are the quantities defined by Eqs. (45), (48), (50) and (52) 
in Watson’s paper.1  

CONCLUSIONS 

In the present study, I derived the kinetic energy operator for molecules with 
non-linear equilibrium geometry in the form (when the electron variables are 
included via Scheme (60)): 
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 (79) 

It is almost equal to the Watson’s one. “Almost” because I was not able to 
show in a simple way two things: a) that the coefficients   can also be put 
before the term  ˆ ˆˆJ p L     in the first sum on the right-hand side of Eq. (79), 
as in the last link of the chain of Eqs. (47) – for doing that, I needed the commu-
tation relations (46) derived by Watson; b) I have not proven that: 
 1 2 3 4U U U U   =  2 / 8 

   

However, I find the expression (79) indeed essentially equal to Watson’s one. If 
one compares it with Wilson’s expression (45), it can be seen that the deter-
minant  , appearing in Eq. (45), is not present in Eq. (79), which is the most 
important simplification made by Watson. Furthermore, although I did not show 
that the free term in Eq. (79) is simply: 
  2 / 8 

   

I showed that it represents a small correction of the potential, because according 
to Eqs. (76) and (77), it involves derivatives (of second and higher order) of the 
instantaneous moments of inertia. From the point of view of a computer (and it 
solves nowadays every Schrödinger equation), the difference between 

1 2 3 4U U U U    and  2 / 8     is only of esthetical significance. When 
already speaking about esthetics, let me mention that (not attempting to diminish 
the achievement of Watson) the middle expression in Eq. (47), being obviously 
Hermitean, looks nicer than the last one. Thus, I hope that I have shown in a 
sense that also in the present case “Omnes viae Romam ducunt”, or, more 
modestly, when not directly to Rome, than at least “Romam ad/ante portas”. 

A great part of the present study represents in fact compilation of already 
derived results. I think, however, that the approach applied in Section 
“Derivation of the Hamiltonian without use of quasi-momenta” has some advan-
tages when compared with that used by Wilson and Watson. The fulfillment of 
the conditions that allowed the application of the generalized Podolsky trans-
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formation to quasi-momenta such as , ,x y zJ J J  might look accidental. As 
mentioned in the Introduction, the algebraic efforts connected with the appli-
cation of this approach are tremendous. On the other hand, the only real difficulty 
in using the approach of the present study consists in inverting the matrix of 
coefficients appearing in the transformation (67) to obtain the coefficients mng  
given in Eq. (68). This looks difficult, because the transformation matrix is of the 
order 3 3S   (when only dealing with the nuclei), but in fact it is not so. The 
final result could be obtained quite easily stepwise: One inverts first the 3 3  
matrix involving solely the time derivatives of the Euler angles and the corres-
ponding impulses and, bearing in mind the structure of this transformation, it is 
not difficult to invert the matrix additionally involving one and two normal coor-
dinates. The jump to the real    3 3 3 3S S    problem is then straightforward. 
The present procedure becomes very appealing in some other cases, e.g., in the 
construction of the Hamiltonian for triatomic molecules in terms of a set of 
internal coordinates (e.g., two bonds and the valence angle, or Jacobi coordi-
nates) and the Euler angles, at various definitions of the MFS (e.g., with the axes 
coinciding with the instantaneous principal moments of inertia). Due to the fact 
that the nuclear skeleton of triatomic molecules is always planar (or linear), it is 
even possible to reduce the Podolsky transformation to a 4 4  matrix problem.14,15 
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И З В О Д  

АЛТЕРНАТИВНО ИЗВОЂЕЊЕ (СКОРО-) ВОТСОНОВОГ ХАМИЛТОНИЈАНА 

МИЉЕНКО ПЕРИЋ 

Факултет за физичку хемију Универзитета у Београду 

Приказано је извођење општег таласномеханичког хамилтонијана за нелинеарне 
молекуле. Оно се базира на трансформацији Хамилтонoвих импулса у одговарајуће 
таласномеханичке операторе помоћу трасформације Подолског. Резултат је суштински 
идентичан ономе који је извео Вотсон у свом епохалном раду (J. K. G. Watson, Mol. Phys. 
15 (1968) 479). Мада не тако елегантан као онај из оригиналне референце, пут пред-
ложен у овом раду је концептуално много једноставнији. Овај поступак може се при-
мијенити и на извођење других типова хамилтонијана.  

(Примљено 9. октобра 2013) 
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