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Abstract: A derivation of the general wave-mechanical Hamiltonian for non-
linear molecules is presented. It is based on the transformation of proper
classical (Hamilton) momenta into their wave-mechanical counterparts by
means of the Podolsky Transformation in its original form. The result is essen-
tially identical to that obtained by Watson in his milestone paper (J. K. G.
Watson, Mol. Phys. 15 (1968) 479). While not so elegant as that of the original
reference, the way proposed in the present study is conceptually much simpler.
This procedure could also be applied to other types of molecular Hamiltonians.

Keywords: Watson’s molecular Hamiltonian; classical kinetic energy; Podolsky
transformation.

INTRODUCTION

Among the papers I have been forced to understand, there is hardly one I
found so difficult as Watson’s milestone study! in which he simplified the vibra-
tion—rotation Hamiltonian for polyatomic molecules, originally derived by Wil-
son and Howard.23 Just to reproduce five pages of this paper, I needed a whole
month, and in order to decipher the extremely complicated formulae in con-
densed Levi-Civita form, I penned several hundreds of leaves. It seems that other
people also had similar problems. I found once in a very serious paper the sen-
tence: “If the Watson’s Hamiltonian is correct ...”. Even Watson himself wrote
in his paper, “The simplicity of the final result suggests that it should be obtain-
able by a less complicated calculation than that described here, I have, however,
been unable to find a more direct derivation.” As another illustration of the com-
plexity of this study can serve the fact that as Watson needed two years to apply
the same procedure for deriving the Hamiltonian for linear polyatomic mole-
cules,* some researchers questioned his results, and that Watson’s answer to this
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criticism came only seven years later.® Thus, the goal of the present study was to
attempt to derive Watson’s Hamiltonian in a less elegant but simpler, or at least
more straightforward, way.

Separation of variables represents an unavoidable step that precedes every
practical ab initio handling of the molecular Schrodinger equation, and/or a treat-
ment of the dynamics of molecules. Experimental spectroscopy indicates that
molecular spectra can be understood in a good approximation if the existence of
several more or less loosely coupled motion modes is supposed. This concept is
supported by theoretical considerations. A ,normal®“ molecule has a relatively
rigid nuclear skeleton, i.e. the nuclei are held at nearly constant mutual distances.
More precisely, the changes of these distances (molecular vibrations) are small
compared to the average values of the distances. These average distances deter-
mine the equilibrium structure of the molecule. The electrons can be imagined as
the constituents of an electron cloud tied to the nuclear skeleton. As a whole, the
molecule translates and rotates in space.

There are two main approaches for construction of the wave-mechanical
Hamiltonian.” In the “first” one (a), the wave-mechanical operator is first derived
in terms of Cartesian derivatives and subsequently, these derivatives are replaced
by the derivatives with respect to appropriately chosen (typically curvilinear)
coordinates, or by some impulses (momenta) not conjugate to any coordinates.
This can be represented schematically as

E(X)—>H(PX)—>1§I(13X)—>FI(13Q) (1)

where Py =—ihd /06X , but in general,f’q #—ih0/0g . In the “second” approach
(b), one derives first the classical Hamiltonian in terms of (classical) impulses
conjugate to chosen non-Cartesian coordinates and only after that are these
impulses replaced by the corresponding wave-mechanical operators:

E(X)—>E(q)>H(P)—>H(E) )

This alternate way was invented by Podolsky and it is called the Podolsky
transformation.8 Sometimes, Hamiltonians are even derived in terms of momenta
not conjugate to any coordinates (such momenta are not “true momenta” in the
sense of the Hamilton formalism).1-3:4

WILSON-WATSON’S HAMILTONIAN

Only the construction of the kinetic energy part of the Hamiltonian will be
considered. The transformation of the potential energy is trivial since it only
depends on the distances between the particles (electrons and nuclei) and these
are invariant to changes in coordinate frames.

An isolated polyatomic molecule composed of S (> 2) nuclei A4, B,...,S,
and N electrons, 1,...4,..., N, with non-linear equilibrium geometry, is consi-
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WAVE-MECHANICAL HAMILTONIAN FOR NON-LINEAR MOLECULES 1 93 7

dered and handled in the non-relativistic approximation. When summing over
electrons, Greek letters, x,v,...will be used. The nuclear masses will be denoted
by my,...,mg, and the electron mass by m,. The total mass of the nuclei is
denoted by A, , and the mass of the molecule by M (M =M, + Nm,). One
starts with a space-fixed coordinate system ( SFS ). A disadvantage of this is that
all the molecular motion modes are mixed in it. For this reason, the Hamiltonian
is transformed to the coordinate system with the axes parallel to those of the
SFS and the origin coinciding with the center of mass of the molecule (includ-
ing both the nuclei and electrons, MCMS ). This transformation serves to sepa-
rate off the translational motions of the molecule. A consequence of the intro-
duction of three center of mass coordinates is that one remains with 3(S+ N)—3
linearly independent particle coordinates in the MCMS . Thus a set of redundant
coordinates, say those of the nucleus A, is eliminated, and they are expressed as
linear combinations of the coordinates of the other nuclei ( B,...,.S).

The MCMS has two drawbacks: First, in the MCMS , the coordinates of
the nuclei and electrons are (indeed weakly, ~m, / M},) coupled. Secondly, con-
trary to the situation with the nuclear skeleton, which has at any moment a defi-
nite structure (it determines the ,,geometry* of the molecule), the ,electron
cloud” cannot be associated with any simple geometric structure. For these
reasons, the positions of all particles are related to the center of mass of the
nuclei (NCMS). Since the axes of all three mentioned coordinate systems are
mutually parallel, the transformation of the kinetic energy expressions is rela-
tively simple and can be realized separately for X,Y and Z coordinates. The
position vectors of the nuclei in the NCMS will be denoted by (R A),EB,...,RS
and that of the u™ electron by R, (#=1,2,...,N).

The classical kinetic energy in the velocity form in the NCMS is:7

s
T:T,Z+Te:%KZ:BmK(X12<+Y1%+Z}<)+
1 &3 L o
+2—Z ZmeL(XKXL+YKYL+ZKZL)+ (3)
MA k-pL=B
A S . A
+5meZ(Xf,+Y/%+ZE,)—2A;ZZ(XﬂXV+YﬂYV+ZﬂZV)
u=l pu=lv=l

where Xx =dXg /dt efc. are time derivatives of the coordinates. The corres-
ponding wave-mechanical operator is:
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s on o B2 1 (82 82 P2
Y E(axz vz Taz J*
K=B K K K

+hzii 2 2 2 ) @)
oM, = S\ aXgax,  ovgey,  Zxdz;

n2 & o2 2 02 o2
2m Z[aﬂ Torg " 822] 2M,, ZZ[@X oX, " 0V,0Y, ' oz,07 ]
¢ u=l1 H H lv=1 H=v ==y

Since the translational motion is of no interest, from now on, as a rule, the
terms ,,space-fixed coordinate system* and ,,nuclear center of mass system* will
be used as synonyms. In this way, the distinction between these two systems
(having parallel corresponding axes), on the one hand, and the molecule-fixed
coordinate system ( MFS ) that follows the rotation of the molecule (this is just
going to be introduced), on the other hand, will be more clearly expressed.

The form of the kinetic energy operator (4) is not yet optimal because in it,
the vibrational and rotational coordinates of the nuclei are completely mixed
(they are hidden in Cartesian coordinates). Thus, the rotational motion of the
molecule will now be separated, as well as possible, from vibrations of the nuc-
lei. In order to accomplish this, a coordinate system is introduced with the origin
in the NCMS but with the axes x,y, and z differently oriented than those of the
SFS /NCMS . The unit vectors along the x-, y- and z-axes are denoted by i ]
and k, and the unit vectors along the space-fixed axes X,Y andZ by
I,J and K . The position vector of the i th particle in the SFS will be denoted in
the general case (nucleus or electron) by Ry . Its components are Xj,Y;, and Zj .
For the same position vector in the MFS, the symbol 7 will be used. The
components of 7 are x yi and zg. Since both the coordinate frames have the
same origin, Ry =7, that is:

R = Xi I + Y J + Z1K = x40 + y ] +zick =7, )

For derivation of the classical Hamiltonian and the angular momentum, the
time derivative of this (these) vector(s) is (are) required. One can differentiate
both in the SFS and MFS,. When the differentiation is realized by an observer
in the §FS, symbols like Ry, % will be used and for differentiation within the
MEFS, Ry, . Differentiating in the SFS, Ry, i.e., the radius-vector with the
components along the SFS -axes, one obtains:

]_.ék Z(ka+ij+2k12)+(ij+ij+Zk1é)Zin+ij+Zk]Z (6)

because the unit vectors 7,J,K do not change in time (7 =0,/ =0,K=0).
However, if the same vector is differentiated in the SFS, but expressed in terms
of the components along the MFS -axes, it has to be taken into account that for
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the observer in the SFS not only do the components of the vector (xz, yi,zx)
change, but also the unit vectors 7, j,k . Thus:

I_}k =()'Ck;+)'/kj+z'k]€)+(xkz}+ykj+zk/é) (7

On the other hand, if the same vector is differentiated within the MFS , one
obtains:

;k =[;ckz?+y°k]+;klgj+£xk f+yk]+zkl€J=xkf+ykj+2kl€ (8)

The expression on the right-hand side follows from the fact that for the
observer in the MFS, the unit vectors 7, /,k are at rest (i = j =k =0), and in the
non-relativistic approximation, time is the same in all coordinate frames, i.e.,
Xk =X etc., as for all scalar quantities.

The MFS is chosen so that it rotates together with the nuclear skeleton of the
molecule, i.e., the coordinate system itself takes over (as completely as possible)
the molecular rotations, while (ideally) the only kind of motion of the nuclei
within it represent vibrations. The orientation of the MFS-axes with respect to the
axes of the SFS is usually defined by means of Euler angles ¢,6, y. They are
certain functions of the nuclear coordinates. In this way, the number of linearly
independent nuclear coordinates in the MFS will be reduced to 35 —-6. Let us
assume that the coordinates of nucleus B are eliminated by the relations
&R = fey (xCseonz2s5) , Where & =x,y,z . Besides, there are 3N electronic coordi-
nates, Xxu,Vg,Zas - XN>VN,ZN. Thus, there are the following two sets of
3(S+N)—3 coordinates: a) NCMS: RB,...,RS, El,...,ﬁﬂ,...,RN and b) MFS:
0,0, Y, FC ey 5,0 5mes Tyse5 Ty - They are related by:

¢=Jfp(XB>Zs), O=fo(Xp,...2s), x=[fy(XBsisZs),

Xy ﬂ«xX(XBa-n:ZS) ﬂxy(XB,...,ZS) AxZ(XB;---;ZS) X,

Vo |=| Yx (XBronZs) Ayy (XBownZs) Ayz (XBonZs) || Y | (9)
Zp Aex (XBonZs) Ay (XBonZs) Az (XBoZs) \ Zy
n=C,...,S,1,...N

and, reversely,
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Xn\ (Axx(@.0.7) Axp(2.60.7) 2x:(0.0.2) ) xn
Y |=| A (0.60.2) A (0.0.%) Az (0.60.%) || v
Zn) \ Az (0.0.7) Az (0.0,7) Az (0.0, 7) |\ zn
n=8B,..,S,1,.,N (10)

158 = fxy (Conz8)s VB = Sy (XCansZ8)s 2B = fo (3C s 28)]s

where the coefficients Ay, =[ Ay =i -1 =cos(x,X)], Ay, =[Ax =7 -1 =cos(y,X)]
expressed in terms of the Euler angles ¢,6, y are:

Ay =cos@cosécos y —sin@sin y, A,y =sin@cosdcos y + cos@sin y,

Az =—sinfcos y

Ayx =—cos@cosfsin y —sinpcos y, A,y =—sin@cosfsin y +cosgcos z, (11)

Ayz =sin@sin y

Ax =cos@sind, A,y =singsiné, 1,7 =cosf

The transformations (10) look completely symmetric with respect to the
nuclei and electrons, but in fact, they are not. Since the coefficients A.y,..., 1,7
(via the Euler angles ¢,6, y) are determined (solely) by the positions of the
nuclei, the relationship between electronic coordinates in the SFS and MFS is
just an orthogonal linear transformation involving constant coefficients. On the
other hand, the transformation of the coordinates of the nuclei is not linear.

The number of linearly independent nuclear coordinates in the MFS, 35 -6,
is just necessary and sufficient to define unambiguously the form of the nuclear
skeleton. In praxis, the Cartesian coordinates xc,yc,zc,....Xs,Vs,zs of the nuc-
lei will not be used but rather some “internal coordinates”, which determine the
positions of the nuclei with respect to one another. These can be chosen in a pure
geometric way, such that they represent the bond lengths, the angles between
bonds, etc. In this paper, however, instead of them, appropriate linear combi-
nations of the displacements of the Cartesian coordinates of the nuclei from their
equilibrium positions measured in the MFS, the “normal coordinates”
Q.,0s,...,035—¢ , Will be used.

It is easy to show that the form of the electronic part of the kinetic energy
operator (4), when carried out via the “first way” is not changed during the
transition to the MFS, i.e., that it becomes:

. 72 N’( 2 52 82 J
T, =— +—t -

2 2 2
2my | oxp Oyy Oz
(12)
R NN 52 52 52
UL P
2M, s o Ox,0x,  Oy,0py 02,0z,
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The invariance of the electronic kinetic energy operator is a consequence of
the fact that the transformation matrix (9) is only a function of the nuclear
coordinates. The transformation of the nuclear kinetic energy operator is much
more complex. For example, the first derivative with respect to the coordinate
X transforms into:

0 op 0 00 o oy o 3000, o
- —+ —+ —+ — 4
aXK aXK 8(0 aXK 00 aXK a)( i-1 aXK an

1

o 0 O 0 Py o
8XK 8xﬂ GXK ay# 8XK 82/,

(13)

u=l1
Nothing on the right-hand side vanishes automatically. Not only the Euler
angles and normal coordinates, but even the electronic coordinates XusYusZus
via the elements Ay ,... of the transformation matrix in Eq. (9) are functions
(moreover, very complicated) of the coordinate X . The last sum on the right-
hand side of Eq. (13) will introduce into the expression for d/0Xg also deri-
vatives of the electronic coordinates in the MFS. The same conclusions hold for
the second derivatives. This means that the transformation whose role was to
separate the rotations from vibrations introduces a coupling between nuclear and
electronic coordinates in the kinetic energy operator. The above analysis of the
structure of Eq. (13) shows that a derivation of the expression for T, in the
MFS in the way applied for transformation of 7, into (12) would be very dif-
ficult. For this reason, it is more convenient to use instead the “second way” (b).
From now on, the derivation presented in Wilson’s book3 is closely followed
It is easy to show that the classical expression for the kinetic energy of the nuclei
from Eq. (3) equals:

1 S = - 1 S . . .
TnzzZmK(RK-RK)zzZmK(XIZ(+YI%+ZI%) (14)
K=4 K=4
under the condition:
S —
> mgRg =0 (15)
K=A

The following notations are used: Rg is the position vector and Rgx the
velocity vector of the nucleus K in the SFS (more precisely, in the NCMS) i.e.,
the vector whose components are measured along the axes of the SFS; 7 is the
position vector, and ;7]? the equilibrium position vector in the MFS; Arg repre-
sents the (vibratignal) displacement of the nucleus K with respect to its equilib-
rium value and 7 is the velocity of the nucleus measured in the MFS. The time
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derivatives of the radius-vector 7¢ as measured in the SFS and in the MFS
rotating with an angular velocity @, respectively, are connected by the relation:

Pk =P+ QX Tk (16)
The first term on the right-hand side describes the change in time of the
vector rx within the MFS, and the second term the effect of rotation of this
system on the change of 7 as measured in the SF'S. As stated above, the orien-
tation of the MFS is determined by the values of the Euler angles ¢,6 and y,
chosen in such a way that the relative displacements of the nuclei with respect to
one another (vibrations) be minimally coupled with the rotations of the nuclear
skeleton. Note that the components of the angular velocity, @y,®y,,, are not
»true® velocities in the sense that they do not represent time derivatives of the
corresponding coordinates — they can be expressed as linear combinations of time
derivatives of the Euler angles.
Complete separation of the vibrational from the rotational coordinates would
be possible if the “vibrational angular momentum”:

S o
Jy= mK(FKxFK] (17)
K=4

in the MFS were Vanlshmg It turns out, however, that the three scalar equations,
Jyx =0, va =0, and J,, =0 do not enable the determination of the values of

¢,0, and y such that the corresponding vectors {7 } and {rK } fulfill the con-

dition J, =0. The best that can be done in trying to separate vibrations from

rotations is to replace the condition J, =0 by:

S o
> mg (FQ xix)=0 (18)
K=4
The quantity on the left-hand side of (18) differs from (17) in that the ins-
tantaneous position Vectors 7x (which appear in J,,) are replaced by their equi-
librium counterparts, ”K — the difference between them tends to zero when the
nuclei undergo small-amplitude (“infinitesimal”) vibrations. Since the vibrations
are commonly characterized by small amplitudes, the condition (18) ensures, as a
rule, good separation of the rotations from the vibrational degrees of freedom. It
is easy to show that expression (18) can be obtained by differentiating the Eckart
condition:?

S
> mg (7 xix)=0 (19)
K=A4

Inserting the expression (16) for the nuclear velocity in (14), replacing 7x by
;71? + AFg , taking into account (19), and expanding the vector quantities into their
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scalar components, one obtains for the classical kinetic energy of the nuclei the
expression:

S ..
== mK(RK 'RK):
K=4

1 1 1
=Elxxa)% +§Iyya)§ +Elzza)22 + Lyoxoy + 1, 0,0; + 1,00y +

S . S . (20)
+oy Y mg (Afg XFK )y + @y Y mg (Mg xFK )y +
K=4 K=A4
N . 13 .
+o, Y. mg (Afg fo)Z+5 > mg (ij
K=4 K=A4

where:

-

S S
2 2 2 2 2 2
I, = ZmK(yK+z ), Iny mK(zK+xK), IzzEZmK(xK+yK)’
K=4 K=A4

2
s s s
Ly =I==> mgxgyg, L,=IL,==Y mgygzg, Ly=I,=-Y mgzgxg
K=4 K=4 K=A
are the instantaneous moments and products of inertia. Note that these quantities
are not constant but are functions of the nuclear positions, which change in the
course of vibrations.

The expression (20) for the kinetic energy of the nuclei consists of three
parts. In the first one appear the moments and products of inertia and the
components of the angular velocity vector @, and this part describes the rota-
tional motion of the molecule as a whole. The last term on the right-hand side of
(20) involves (besides the nuclear masses) only the velocities of the nuclei
moving in the MFS, and thus represents the vibrational kinetic energy. In the
middle term appear both the angular velocity and velocities within the MFS; it
describes the coupling between the rotations and vibrations. The appearance of
this term is a consequence of defining the orientation of the MFS axes by means
of the conditions (18), instead of equating (17) to zero.

The most convenient way to describe the molecular vibrations is based on
the use of the normal coordinates, Q,...,0;,...,(35_¢- Actually, their form is not
known at this stage, because they can be determined only after the introduction of
the Born—Oppenheimer approximation!? and solving the electronic Schrédinger
equation at various nuclear arrangements around the equilibrium molecular
geometry. Only the fact that these coordinate do exist can be used at this
moment. By summing, the normal coordinates are denoted by lowercase Latin
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subscripts i, j. They are connected with the Cartesian displacement coordinates,
Axg ,Avg ,Azg , by the linear relations:

35-6 35-6

Jmg Axg = D7 Lk O \mr vk = D Lk 10,
i=1 i=1 (22)
35-6

Jmgbzg = > Lg 0, K=1,..,8
I=1

where the (constant) coefficients Ik ;,/yk ;,lzk,; are chosen such that the nor-
mal coordinates simultaneously reduce the expressions for the kinetic energy and
the quadratic part of the potential energy of vibrations to the sums of quadratic
terms:

1 35-6 . 1 35-6
Tv:E z Qi29 V:E Z &le (23)
i=1 i=l1

Expressed in terms of the normal coordinates, the terms coupling vibrations
with rotations are:

N . 356
D mg (Mg xFK)x = Y, Ji0;
K=A i=1
s . 356
> mg (A xFK)y = Y RiO; (24)
K=4 i=1
s . 35-6
D mg (Mg xFK)z = Y, NiO;
K=4 =1
where:
35-6[ S 38-6
3= z (lyK,jlzK,i _ZZK,jlyK,i) Q] = z é/Jle]’
j=1 Lk=4 . J=1
35-6[ S 38-6
Ri= D | 2 (k. jbai—l jlxi) |05 = D $HO) (23)
j=1 Lk=4 _ J=1
35-6[ S 356
Ni= 20| X (Iekjleka —lyk jliki) Q) = 2 65O
j=1 L K=4 i J=1

are linear combinations of the normal coordinates. Inserting (24) into (20), one
obtains:
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1 1 1
T, =§Ixxa)% +§1yya)J2, +EIZZa)Z2 + Loy 0y 0y + 1, 0y0; + 10,04

356 35-6 35-6 35-6 (26)
toy Y. Ji0i+wo, Y, RO+, Z NQ,+E Z O?
i=1 i=1
Equation (26) is the kinetic energy of the nuclei in terms of the coordinates
and velocities. .
In order to obtain the Hamiltonian, the velocities wy,®,,®, and 0i=0;
have to be replaced by impulses. The impulse, P, canonically conjugate to the
normal coordinate (;, is:

B:%:Q+m@+%%+&@ (27)
00;

First, in expression (26), the components of the angular velocity @ are replaced
by the components of the nuclear angular momentum R :

S _ s \ S

R= > mg (i xig)= > mg (g xix)+ Y. mg[ix x(@xix)] (28)

K=A4 K=A4 K=A4

along the axes of the MFS :

35-6 o7
Ry = Iy +1xywy + 0, + Z 30 =—,
P Owy
35-6 6T
Ry =1 ox + 10, +1,,0;, + Z R,0; = , (29)
@y
3S—6 or
R, =10y + Lyo, + 10, + Y N0 = w” .
i=1 z

When dealing only with the nuclei, as now, these quantities equal the com-
ponents J,,J,,J/; of the total angular momentum (also involving electronic
contributions). Using Eq. (27), one derives

Ry = px =1'"xx +I'xy @y, +1'y; @7,
Ry—py=1'yyoy+1'y, 0, +1'y; @, (30)
R, —p:=1"sxon+1';0p+1';; 0.

where:
35-6 35-6 35-6

z ‘513 > py Z m Pl s pZ z NIB (31)
i=1

i=1 i=1

are “vibrational angular momenta”, and the quantities, defined as:
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35-6 35-6 35-6
['xxE]xx_ZSz‘z’ PnyIyy—ZSRzza 'z = ZN

i=1 i=1 i=1 (32)

35-6 35-6 35-6
I'y=Ly— Y IR, Iy =1 ZSRN,, I' =1, Zx\s,,

i=1
reduce, in the case of small-amplitude V1brat10ns, to the instantaneous moments

and products of inertia. To eliminate from the expressions (26) and (28) the com-
ponents of the angular velocity, the transformation inverse to (30) is required:

Oy = Ly (Ry _px)"'/uxy(Ry _py)"'/uxz(Rz - Dz)s
Wy = ,ny(Rx —Px)+ ,Uyy(Ry _py) Tty (R = pz)s (33)
@7 = tzx(Ry _px)+,uzy(Ry _py)+,uzz(Rz = Dz)-

The coefficients p,p=pp, (a,f=x,y or z) are elements of the matrix
inverse to the matrix with elements I'ys. u,p are only the functions of the
normal coordinates. Using the relations (27)—~(33), expression (26) can be trans-
formed into:

3S 6

Z Z tys(Ry = py J(Rs — p5)+— > P2 (34)

2;/x5x i=1

PODOLSKY TRANSFORMATION

Equation (34) represents the classical expression for the kinetic energy of
nuclei in terms of the momenta P. conjugate to the normal coordinates, the
vibrational angular momenta, py,py,p,, and the nuclear angular momenta
Ry,R),R, . The construction of the corresponding wave-mechanical operator is,
however, not trivial for two reasons. First, curvilinear coordinates (Euler angles)
are being dealt with, and secondly, the momenta Ry,R),,R, are (in general) not
conjugate to any concrete coordinates. The first problem was solved by Podol-
sky.8

Suppose that one has M generalized (in the general case non-Cartesian)
coordinates, ¢j,¢7,....qp - In all cases of present interest, the classical kinetic
energy will be homogeneous quadratic functions of generalized velocities:

1 M M
:E Z ZTmn(%a‘Da---aQM)anq‘n (35)

m=1n=1

The coefficients 7y, (=T, ) depend, in general, on generalized coordinates.
The relationship between the generalized velocities and the impulses conjugate to
the coordinates ¢;,47,...,q) are:
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or Y

Pn === Tun(q1,425--401 )im n=1..M (36)
04y m=l1
The relations inverse to (36) are:
n
Gn =2, Emn(q1:92>---901) P » n=1...M (37)
m=1

where g, =g, are elements of the matrix inverse to the matrix {7, !,
Zmn =(T71),,,. Inserting the expressions (37) for ¢, into (35), one obtains the
classical kinetic energy in impulse form:

1 M M
T== 2 2 &mn (912001 PP (38)
m=ln=1

If an attempt is made to construct the corresponding wave-mechanical
operator by replacing the impulses in expression (38) with the corresponding
operators, problems are encountered. Since the impulse operators do not in
general commute with the coefficients g, (because these depend on the coor-
dinates), it is not possible based on (38) to conclude which is the correct ordering
of the quantities on the right-hand side. If one worked instead with Cartesian
coordinates (or any other ,rectilinear coordinates as, e.g., the normal coordi-
nates), the expansion coefficients would be constant, and since the impulse
operators associated with different coordinates or particles commute, one would
directly obtain the wave-mechanical kinetic energy operator as:

-1y Y ) 3) e
T=— EmnPmPn =—— 8mn T~ (39)
2 m=ln=1 2 m=ln=1 0qmOqn

Podolsky showed that it is nevertheless possible, without intermediate use of
Cartesian coordinates, to construct the wave-mechanical Hamiltonian that corres-

ponds to the classical expression (38) if this classical expression is first appro-
priately symmetrized:

1 M M
T= Eg” A3 pmg V2 gmnpng!t (40)

m=1n=l1

This leads to the operator in the form:
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| M M )
T =—s712gl4 { 3 pmg 2 b }g1/4S}/2 _

2 m=1n=1 (41)
"2 a1 AZI: AZ/[; O __in O | a2
=——s;"%g —— g 2gyy— g4
21 m=1n=1 Odm " Odn !

By g is denoted the determinant with elements g;,,, and s, is a con-
veniently chosen weight factor (in general a function of the coordinates) of the
volume (integration) element, dV =dqidq;...dqy EqunM: 1dq, - In the expression
(41), the operators act onto everything on their right-hand sides (including, of
course, the wave function). The operator (41) can be transformed so that the
differential operators only act on the wave function:

fEf(z)-i-f(l) Zngna 6
m=ln=1 42)
_E% % OZmn gmn aﬁ 0 _
2 e aq11 Sq aQn aqm
¥l agmn og
__z Z +gmn— +
8 M= 0qn Oqn 0qmOqn
agmn &S‘q azsq _ 8mn asq as_q
Odn a‘Im a‘]ma‘]n S% Oqm Oqn

Note that the kinetic energy operator in curvilinear coordinates (unlike the
operator in Cartesian coordinates, which is a homogenous quadratic form of
derivatives) also involves terms linear in derivatives and a constant (i.e., not
containing any derivatives) term. Both the linear and constant terms are com-
pletely determined by the expansion coefficients of the quadratic part. In a spe-
cial, but quite common case, when g =J-2 and s, =/, where J is the Jacobian
of the transformation from Cartesian into non-Cartesian coordinates, T’ 7(0) =0.

The Podolsky transformation in its original version covers the cases when all
momenta are conjugate to the corresponding, in general curvilinear, coordinates.
However, sometimes it is more convenient to use the momenta, such as the
components of the angular momentum, which are not conjugate to any coordi-
nates. These quantities are called quasi-momenta. This topic was investigated by
Wilson and Howard?2-3 and later more generally by Watson;!# they showed that
the wave-mechanical Hamiltonian could be expressed in terms of the operators
corresponding to quasi-momenta, provided that some special conditions are ful-
filled.
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In the present case, the quasi-momenta are the quantities (Ry - p},). It can
be shown that the components of the total angular momentum, J,,J y>dzs along
the MFS axes, being in the present case equal to the components of the angular
morpentum of the nuclei, Ry,R,,R,, are related to the impulses py,,pg,p, ,
conjugate to the Euler angles:

or oT oT
=—, =—, :—' 43
Py o0 Po =75 Px o7 (43)
by:7,11
cos y .
Jy=— - Doy tSIny - pg +cotdcosy-p,,
x sin0 Py X PO X Py
sin y .
J, = - Py +COSy-pg—cotBsiny-p,, 44
Y= ng Po X Do XDy (44)
JE::pz

Note that the relations (44) are valid independently of whether the electronic
coordinates are related to the SF'S or MFS, whereas the expressions on the right-
hand side equal to Ry,R),R;, respectively, are only valid when the electronic
coordinates are left in the SFS. There were some reasons to prefer up to now the
symbols Ry,Ry, R but from now on, we skip to J,,J y»>Jz . It turns out that
the transformations (43/44) fulfill the conditions required for application of the
generalized Podolsky transformation. The volume element at the integration of
the wave functions will be dV =sin@-de-dO0-dy-dQ,...dQ3s_¢. Therefore, the
wave-mechanical operator for the kinetic energy of nuclei, analogous to the
general expression (41), is:

o ezl 1 1
Ty = u > 2Ty by Jasr 2(Js - ps ) fut +
y=xX0=x

| Lfs=s 1)1
ol D Bu 2B pu4

(45)

i=1

where the wave-mechanical operators jy and p, (y=x,y,z) are obtained by
replacing in the expressions (44) and (31), the classical impulses pg
(9=0,0, y,P) by the operators —ihd / dg . (Watson* claimed that this did not in
general hold and that in the present case the correct result was obtained thanks to
“a more-or-less fortuitous cancellation” of some terms. I find this statement a
little bit severe; the mentioned fortuitous cancellation is actually a direct con-
sequence of the proper choice of the volume element dV ).

Watson! showed that the expression (45) could be simplified. He derived
certain commutation relations, such as:
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Z [ Porstap | =0 (46)

which enabled Eq. (45) to be rearranged into:

R 11& & . R . 13S—6 . m
Ty=21 2 2y =y ) (Js = bs )+ 2 B2 = Dty =
y=Xx0=x i=1 y=x @7)

11& 2 . . R . 135—6 5 w2
:5 Z_:gﬂyﬁ(‘]}/—py)(-]é_pé') +E§B _?Z_:ﬂyy
Y=X0=X 1= V=X

The term —(h2 / 82(2 Uy, can be handled as an additional part of the
potential; however, unlike the common potential terms, it depends on the nuclear
masses and thus, it is not isotopically invariant.

TRANSFER OF ELECTRONIC COORDINATES INTO A MOLECULE FIXED SYSTEM

Now both the electronic (Eq. (12)) and the nuclear kinetic energy (Eq. (47))
operators, expressed in terms of the desired impulses/momenta, are available. Let
us return, however, to Eq. (13) and the text following it: It was concluded that the
transformed nuclear kinetic energy operator would be spoiled by electron vari-
ables but the operator (47) does not contain them. What has happened? The
explanation is the following: the full classical kinetic energy was separated into
two parts, which were handled in different ways. The electronic kinetic energy
operator was constructed by method (a) (as defined in Introduction), and the
kinetic energy operator by method (b). These two methods give identical results
when applied to the full kinetic energy, but not always when the classical kinetic
energy is separated into its constituent part. Thus, although we started with the
classical kinetic energy for nuclei being equivalent to the corresponding quantum
mechanical operator in terms of the NCMS variables, results identical to those
that would have been derived if the problem had been handled using method (a)
were not obtained. Since good reasons existed to avoid scheme (a) in the cons-
truction of the nuclear kinetic energy operator, now the electronic kinetic energy
will be transformed also by method (b). Note that neither Wilson2-3 nor Watson!
considered the transfer of the electronic variables into the MFS. This topic was
handled in the classical paper by Van Vleck,!2 nowadays very difficult to read
due to the old-fashioned notation and definition of the Euler angles. A modern
presentation can be found in the book by Brown and Carrington.!3 The non-
appearance of the electronic coordinates in the operator (47) is explained as being
a consequence of the tacit assumption that the angular momentum operator with
the components J,J,,J; , depending only on the Euler angles, does not act on
the electron coordinates. However, if the electronic coordinates are defined with
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respect to the MFS-axes, the indirect effect of the operators Jy,J,,J, on them
(via the transformation coefficients expressed in terms of the Euler angles) has to
be taken into account. The way chosen herein is more straightforward.

Starting with the classical electronic kinetic energy in velocity form, defined
in the NCMS (see Eq. (3)):

1 N = X
Tezzmez(Ry.Rﬂ)—

/_1:1 /u:l v=1

2 N N

(Rﬂ .EV) (48)
and substituting ﬁK by the expressions analogous to (16), ?ﬂ =7yt @xry,, one
obtains:

1 1 1
T, =51§xwx +2Ie o +212wz + 5 ox0y + 15, 0y0; + 150,05 +

N m N N m N
+ox| D me yu—ﬁZyv 2= D, me Zﬂ‘ﬁezzv Yu |+
=1 v=l u=1 v=l h
N . N m N ]
+oy, Me| Zy — ZZV Xy Zme xy—ﬁerv Zy |+
u=l v=l u=1 v=l i
N N N N (49)
. m
+w, Zme[xﬂ——vajyﬂ Zme yﬂ—ﬁeZyv Xy |+
u=l1 v=l u=l1 v=l
1Y 1Y (. m .
o 2 medy |t va 3 2 mebu| Fu =y 2 v [+
2~ 2~ M =
u=l1 p=1 v=l
1 . me
+Ezmez’u(z’u_ﬁezva
u=l v=l
where:
N m N
Ifxzmez (y%,Jrzf,)—ﬁeZ(yﬂyanzﬂzv) yeres
=1 =1
! ’ (50)

N N
I, =-m, Z{Zﬂxﬂ —%Zzﬂx‘,:l

u=l1 v=l
are the electronic moments and products of inertia. (The physical sense of these
quantities is less sound than that of their nuclear counterparts but they will not
appear in any final result). Adding (49) to (26), one obtains the total classical
kinetic energy of the molecule.

The momenta conjugate to the electronic velocities have the form:
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oTr oT. me me

Py=—n= ezm{fc ——eE)'CJera)(z ——eng—

X : : e| Xu v e@y | Zy v
o, Oty M= M=

me N
—Me yy_ﬁzyv )
v=l

oT T, m, & m, &
P,=—=—%=m,| y,-—% )y |+ mew, | x ——egx -
G e(y” MVZJV] { M ] on

e
—MeWx | Zy — Zy |»
M ol

_ 8T 5Te . me N . me N
Pr=—= :me(z,u_ﬁzzy + My y,u_ﬁVZZva -

v=l

m N
M@y | Xy ——- z X,
M =
v=1
The electronic momenta associated with the components of the angular velo-
city are:

N N
8T6=L = I + 150, + G0, +me S : _&Z- _
FY xx@Ox T 1xy@y + 1,0, +Me ) Vy| Zy M Zv

x p=1 v=l
N m N
—mezzﬂ yﬂ_ﬁezyv D
ﬂ:] v=l
T, . [ e
G0, T 5x‘0x+1§ywy+’52“’2+mezzﬂ{xﬂ_ﬁezxvj_
y . ;VFI v=l (52)
. m, .
—meZXy[Zu—ﬁZZv}
Iu:l v=l
o, S PR
_eELZ:]Zexa)x+]§ywy+1§za)z+m62x# yﬂ—_eZyv _
0w, — M =

lufl v=1

N m
_mezyﬂ xﬂ—ﬁele/ .
lu:] v=1

Taking into account (50) and (51), Egs. (52) can be transformed into:
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oT, ¥ N
Fy = 2 (VuPuz = 2uPuy ) = L. aw =D (2uPux —xuPuz)=Ly
s b (53)
or, &
Py Z(xu “y yuPux) L,
Z —
p=l1
Thus, by summing Rx,Ry,RZ and Lx,Ly,LZ , one has, based on Eq. (30):
Jo= oT :8Tn +8Te R+ L=
Owy Owy Owy
=1y 0y +1'yy 0y + 1" @7 + py + Ly,
J,= oT ZE)Tn +8Te SRy AL =
aa)y 8a)y aa)y (54)
=l'yoy+1'yy, 0, +1'y; 0 +py+L,,
J. = oT zaT,, +6Te CRAL. =

ow, Ow, OJw,
=l'yor+1'y; 0,+1';; 0, +p + L,
Using the above relations and Egs. (26), (27), (31) and (32), one obtains for
the total kinetic energy:
1 1 1
T,+T, =51'xxa)% +51' a))z, + 21'ZZ w? +1'yy o0y +1'y; 00, +

1 25-6 1 N
+1', 0.0 +E > P2+ > > (Pﬁ)C + P2, +Pﬁz)+ (55)
i=1 € u=l1

x+ PuyPRoy + PRz )

> (i

Note that the electronic moments of inertia have disappeared. From Eq. (54),
one has:

2M,u1v1

Jx = px — Ly :I'xxa)x+1'xya)y +1'x 0,
Jy=py—Ly=I"yy oy +1'yy, 0, +1'"y; @, (56)
Jy=p: =L =150 +1'; 0, +1";; 0,

It follows:
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1 1
T, +T, :E(Jx —px—Ly) o +E(Jy —py—Ly)o, +

+=(Jo=pz =L))o, += > PE+ Z(ng + P2, +sz)+ (57)
2 2 = 2m,
1 N N
+ > S (PuxBox + PuyBoy + PuzByz )
M, pu=lv=l

The transformation inverse to (56) is:
O = fhex (Jx = Px = L )+ oy (Jy = Py =Ly )+ iz (Jz = pz = Lz ),
oy =ty (Jx = px = L)+ ttyy (Jy =y =Ly )+ iy (J2 = pz = Lz),  (58)
0 = pizx (Jx = px = L)+ ttyz (Jy = Py = Ly )+ ptzz (J2 = pz = L)
Inserting the expressions (58) for @y, w,,w, into Eq. (57), one obtains:

1 z 4
TotTe=2 20 2 s (Jy =Py =Ly )(Js —ps —Ls)+
y=x90=x

12S—6 1
+5 2L B
i=1

2m

N
> (P + B3y + PR )+ (59)
e =l

1
2M,

N N
) Z(Pﬂxpvx + Py By +P,,ZPVZ)
u=lv=l1

J’_

Thus, as predicted, the electronic coordinates (via the electronic angular
momentum) have crept into the nuclear kinetic energy (first sum on the right-
hand side). This expression differs from the Wilson one, Eq. (34), due to pre-
sence of the last two terms representing the electronic kinetic energy, and by the
substitution:

Ry —px &> Jx —Lx — px,

Ry —py > Jy—Ly—py, (60)

RZ — Pz _>Jz _LZ — Pz
in the rotation part of the kinetic energy. If the electron spin variables were also
defined in the MFS , the expression on the right-hand side of Eq. (60) would be
replaced by Jg—Lg—pe—Sg (£=x,y,z). Since Ly,L,,L. only involve the
electronic variables, and the coefficients s only depend on the normal coor-

dinates, one could now proceed in the same way as Watson.! The final result for
the total kinetic energy operator would be analogous to (47):
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f=fn+72=%{f ZZ:“75(jy‘iy‘ﬁV)(j5_£5_’55)}+

y=xX0=x
13S—6 R hz z 1 N R R R
+§ Z I}Z—?Zyw+2 Z(Pﬁx+Pﬁy+Pﬁz)— (61)
i=1 V=X ¢ u=l1
1 N N o o
LS S (bt By 4 )
€ u=lv=l1

The last two terms (sums) on the right-hand side of Eq. (61) represent the
kinetic energy operator of electrons. The result (60) will be used to simplify the
derivation of the total kinetic energy operator. Only 7,,, will be explicitly trans-
formed and later the fact that the components of the electronic angular mom-
entum, L,,L,,L, enter the Kinetic energy operator in the same way as those of
the vibrational ( py, py, p-) one will be used.

DERIVATION OF THE HAMILTONIAN WITHOUT USE OF QUASI-MOMENTA

Now several relations will be derived that will be required later. First, the
time derivatives of the elements A,y,... can be expressed in terms of these
elements and the time derivatives of the Euler angles:

Axx =—AxyP—Azx COS Y- O+ Apx ¥ s Azz =—sin0-0 (62)

The time derivatives zij',l; are expressible in terms of the unit vectors 7, /,k
themselves:

= (g 1)7 + (A2~ cos -0k,
J =Rz 0= )7 +(Azp+sin g - O)F, (63)
k=(Ayz6+cos g 0)i +(~Ayi—sinz-0)]
Using (62) and (63), one can rewrite Eqs. (6) and (7) in the form:
R.=F Z[fci + (A2~ 1) i +(/1yz¢’+ COSZ'Q)ZJ;JF
+[)"i +(ﬂzz¢+}'()xi+(—/1xz¢—5inl'9)ziJ]+ (64)
+[z'i +(~Ayzp—cosz-0)x, +(/1xz¢+sm;(-9)y,}l€

Based on Eq. (64), for the classical nuclear energy, the following expression
was derived:
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| S L. 1 S 13&6.2
Tn=EZmK(RK'RK)=§§ & (P - ) = EEQI‘"'
35-6 o356 o
+ Z ( AR ZSR + A7 N; )Q,-ngr Z (S,- sin y + R; cos;()Q,HJr
i=1
35-6
+Z NO 7 +— [/1 Iyym L + A2 1o + 227 Ay Ly +

1 .
+2Ay7 2271 e + 207 2271 1007 + 2[Ixx sin? y + 1, cos? y + (65)

1 .
+2Iys1n;(cos;(]02+2lzzl +[( 7zl + Az 1y +lzzlxz)sm;(+
+( Az Ly + Ayz Ly + Az 1,7 ) c0s 2190 + [ Axz Ly + Ayz Ly +

+A71;; oy + [Iyz cos y + 1, sin ;(]9;'(

where by means of the relations (22), the Cartesian coordinates and their time
derivatives are replaced by the normal coordinates and their derivatives:

35-6
mg (VKiK —ZK VK )= Z 30,

Me

K=4 i=1
S 356
D mi (zxxk —xxzg )= Y. R0, (66)
K=A i=1
S 356
D> mi (xgyx —yrix )= D, NiQ;
K=4 =

These relations, when accompanied by the Eckart condition (17), are equi-
valent to (24) The momenta conjugate to the coordinates are:

E@Q _Ql [ xZJ,+ZyZ‘.R,~+/IZzN,-:|(/')+[S,-sin)(+9%icos;(]9+b€i-j(
35-6

=—— Z( T~ Sl+ﬂ, ZSR +/122N )Q
i=1

[zleyy+,1y221xx+,1222122+2/1xz/1 Ly + 242271z + 2z 2ez e |0+ (67)
[(/1 Lix + Ayz 1y + Azl )sin g +(AxzLyx + gz Ly + Aoz 17 )cos ;(]9+

+|:ﬂxZsz +iyZ[zy +izZ[zz:|j(:
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oT 35-6

Po="5= D (Iisin g +R;cos x)0; +
i=l

+[(llexx +Ayzlxy + Azz 1y )sin;(+ (}tlexy +A4z1y +ﬂzzlyz)cos;(](/)+
+[Ixx sin? X+1y cos? X +21, sin;(cos;déhr[lxz sin y +1,; cos;(];(,

@T 3326 .
Py = a = Z N; Qz +[le]xz+lyZl z+ﬂsz]zz]¢’+
i=l

+[Iyzcos;(+lzxsin;(]9+lzzjg

The transformation inverse to (67) is a concrete case of the relations (37)

with ¢,= O,...035-6.9,0,%, and py=R,...P35-6, Pp:Po Py » Where the
coefficients g, are:

g0i0; =0ij +Eix3j +EiyRj +EizNj
cosy . siny
TRy

sind sind

g0i6 =—Eix sin y —Eiy cos y
80iy =—Eix cot@cos y + Eiy cotfsin y — =iz

os2 y sin? y sin ycos y

Ty —— = 2y ——
sin< @ sin< @ sinZ @
800 = tixx sin? y + pyy cos? y + 2 uuxy sin ycos y

g0ip =Zix

gop = fxx

gy = (,uxx cos2 y+ pyy sin? y —2pxy sin;(cos;()cot2 0+
+2( ptzx €08 y — yz sin y )cot @ + pzz

i 2 in2
S y Cos COoS — S
gwgz(ﬂyy_ﬂxx)M_ X M

sin@ siné
_cosfcos? y  cos@sin? y
Eor =TI T2 0 Y Gn2 e
cos@sin y cos y sin y cos y
+2 -
a sinZ @ ¥ sing " sine

g0y =(pxx — pyy )cot @sin y cos y +
+ tixy cot 6’(c0s2 z —sin2 ;() + yz €OS y + pzx sin y (68)
with:
Six = pxx i + pxyRi + pxzNi,  Biy = iyxTi + pyyRi + 1yzNi 69)
Hiz = /lszi + /lzyiRi + ,lezNi

The determinant of the matrix with elements g, is:

Available online at shd.org.rs/JSCS/

2013 Copyright (CC) SCS



1958 PERIC

_ Hox Hyy Hzz — ,Uxx,ujzzz - ,Uyy,uzzx - ,Uzz,u)%y + 2,nyluyz,uzx g=

sin2 (70)
= u(01,02,03)sin2 0

The coefficients (68) determine the classical kinetic energy of the nuclei and

at the same time the quadratic part of the corresponding wave-mechanical
operator (42):

) 35-335-3 2
2 S Cmtgn

m=1 n=1

mn=Q,...ks-6,0,6, 7 (71)

The linear (in derivatives) part of the wave-mechanical operator (42) corres-
ponding to the choice:

g 1(01,02,0)sin 20, s, =sind (72)

where the symbol o stands for irrelevant constant factors, is determined by the
second term on the right-hand side of Eq. (42), having in the present case the

form:
R 2 [35-6]35-6
T(l):_h_{Z{z gQ’QfJ o .

2 i=1 | j=1 QJ‘ 00;

gQ](p 6g¢79

35-6 ¢ P
+ Z + gpo cotl + gﬁﬂl]i
A 0Q; 00 Oy Op )
35-6 9g () o 2
H 9,6 +gpp cotO + gg;(] 0
= 0Q; 00

35-6
+ Z 6ngZ +ag;((p +ag;(6’

00, op 08

0
+gypcotf+ 7 ]i}
= oy
Jj=1
The constant term (with respect to derivatives) from Eq. (42) reduces in the
present case to:

f(O) #H2 35-635-6 1 (angQ/ ou ‘g azu J
== 0,0; -
8 =l j=l H aQl aQ] / aQlan (74)
5 Ou o

a2 %991 50, 20
Using the formulae (68), (31), (44), those for the quantities j)% =jxjx,

S

Jy v J Jy ..., which can be derived starting with Egs. (44), and rearranging,
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one obtains for the wave-mechanical kinetic energy operator of the nuclei the
expression:

2{2 (T = by ) s (Js - p(s)}+—3SZ_‘, p2+7(0) (75

y=x0=x i=1
The explicit form of 7(0) is:

" 35-6 27 n
A0 12 o) 23&ba
' { % Z (6@ -

35263S 681" or" 3SZ:63SZ6 62]" z i
T Hys
2 =l j=1 00, aQJ 4 =l j=1 6Qian y=x0=x
35-6 35-6
> Lo D, é”;f-Ql— (76)
k=1 =1
35-6 36 z =z 35-6 35-6
or" OHap
7 Z G0, & X X ah G0 X <jo-
J i=l a=xpf=x L k=l =1
35-6 alu 35-6 z 4 3S 6
]u Z aQ Z Z ‘uaﬂé,l] Z g]ng
J =l a=xf=x
where:
z 0 o 13S—6 ”
ﬂaﬂzz(ln_ ) [ (["_ )ﬂ’ I"aﬂ :Iaﬂé‘aﬂ—FE Z ai Ql?
£=x i=1
ol 77)
alaﬂ:(_aﬂ] ) a9ﬂa€:x7yzz
aQi 0
are the quantities introduced by Watson. After some algebra, one finds that:
f(0)=U1+U2 +Uz+Uy (78)

where U;,U;,Us,Uy are the quantities defined by Egs. (45), (48), (50) and (52)
in Watson’s paper.!
CONCLUSIONS

In the present study, I derived the kinetic energy operator for molecules with
non-linear equilibrium geometry in the form (when the electron variables are
included via Scheme (60)):
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R 11& & . R . . ) .
Ty == ZZ(Jy_py_L}/)ﬂyé(Jé_p5_L5) +
y=x0=x
35-6
+EZP.2+U1+U2+U3+U4+

1

i=1
v (79)

> (ﬁﬁx +Pgy + 1352)—
=1

J’_

2my

| NN o o
P ID) (BB + BuyRoy + Bz )
¢ u=lv=l1

It is almost equal to the Watson’s one. “Almost” because | was not able to
show in a simple way two things: a) that the coefficients s can also be put
before the term jy -Dy— ]:y in the first sum on the right-hand side of Eq. (79),
as in the last link of the chain of Egs. (47) — for doing that, I needed the commu-

tation relations (46) derived by Watson; b) I have not proven that:

Uy +Uz +Us +Us=—(12 /8)27;177

However, I find the expression (79) indeed essentially equal to Watson’s one. If
one compares it with Wilson’s expression (45), it can be seen that the deter-
minant g, appearing in Eq. (45), is not present in Eq. (79), which is the most
important simplification made by Watson. Furthermore, although I did not show
that the free term in Eq. (79) is simply:

~(n2 /8)Zy Ly

I showed that it represents a small correction of the potential, because according
to Egs. (76) and (77), it involves derivatives (of second and higher order) of the
instantaneous moments of inertia. From the point of view of a computer (and it
solves nowadays every Schrodinger equation), the difference between
Uy +Uy +Uz +Uy and —(h2 /S)Zy,u},}, is only of esthetical significance. When
already speaking about esthetics, let me mention that (not attempting to diminish
the achievement of Watson) the middle expression in Eq. (47), being obviously
Hermitean, looks nicer than the last one. Thus, I hope that I have shown in a
sense that also in the present case “Omnes viae Romam ducunt’, or, more
modestly, when not directly to Rome, than at least “Romam ad/ante portas”.

A great part of the present study represents in fact compilation of already
derived results. I think, however, that the approach applied in Section
“Derivation of the Hamiltonian without use of quasi-momenta” has some advan-
tages when compared with that used by Wilson and Watson. The fulfillment of
the conditions that allowed the application of the generalized Podolsky trans-
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formation to quasi-momenta such as Jy,J,,J; might look accidental. As
mentioned in the Introduction, the algebraic efforts connected with the appli-
cation of this approach are tremendous. On the other hand, the only real difficulty
in using the approach of the present study consists in inverting the matrix of
coefficients appearing in the transformation (67) to obtain the coefficients gy,
given in Eq. (68). This looks difficult, because the transformation matrix is of the
order 35 —3 (when only dealing with the nuclei), but in fact it is not so. The
final result could be obtained quite easily stepwise: One inverts first the 3x3
matrix involving solely the time derivatives of the Euler angles and the corres-
ponding impulses and, bearing in mind the structure of this transformation, it is
not difficult to invert the matrix additionally involving one and two normal coor-
dinates. The jump to the real (35 —3)x(3S—3) problem is then straightforward.
The present procedure becomes very appealing in some other cases, e.g., in the
construction of the Hamiltonian for triatomic molecules in terms of a set of
internal coordinates (e.g., two bonds and the valence angle, or Jacobi coordi-
nates) and the Euler angles, at various definitions of the MFS (e.g., with the axes
coinciding with the instantaneous principal moments of inertia). Due to the fact
that the nuclear skeleton of triatomic molecules is always planar (or linear), it is
even possible to reduce the Podolsky transformation to a 4 x4 matrix problem.!4:15
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U3BO[
AJITEPHATHBHO U3BOBEE (CKOPO-) BOTCOHOBOT XAMUJITOHHUJAHA

MWJBEHKO INEPHR
Qakynimedl 3a Qusuuxy xemujy Ynusepsutieiia y beoipagy

[TpuKka3aHo je W3BOheme OMIUTEr TATaCHOMEXaHWYKOT XaMWJITOHHjaHA 3a HeJlHHeapHe
monexysne. OHo ce Dasupa Ha TpaHcdopmMauuju XaMWITOHOBUX HMIIyJca y oAroapajyhe
TaJlaCHOMEeXaHHuKe oreparope nmomohy tpacopmanuje ITomonckor. Pe3ynTar je CyIITHHCKH
UJIEHTHYaH OHOMe KOjH je u3Beo BoTcoH y cBom enoxanHom paay (J. K. G. Watson, Mol. Phys.
15 (1968) 479). Magma He Tako eferaHTaH Kao OHAj U3 OpPUTMHAIHE pedepeHue, MyT mpef-
JIOKEH Y OBOM Dajy je KOHLENTyaTHO MHOIO jemHOCTaBHHjH. OBaj MOCTyNaK MOXe Ce MpH-
MHjEHUTH ¥ Ha U3BOheme IPYrux TUIOBA XaMUITOHUjaHa.

(Tlpummeno 9. oxtodpa 2013)
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