Improving the ShIRPA physics model

Assessing and improving the physics in ShIRPA (Sheffield Insigneo Radiology Physics App) using anthropomorphic phantom images.

INSIGNE© Institute for in silico Medicine

Background

What is ShIRPA:

- Simulates an X-ray unit using a mobile device
- Developed as a teaching aid for radiologists & radiographers
- Demonstrates the effects of voltage (kVp) and milliampere seconds (mAs) on dose area product (DAP) and image quality

Project objectives:

- Assess the accuracy of the existing physics model in three key metrics - DAP, image noise and image contrast
- Create improved models for each of the above outputs
- Provide insights into the capabilities and limitations of the app

Methods

- Acquired real X-ray images of a pelvic phantom, with corresponding DAP readings
- Real and app-produced images were compared using relative changes in noise and contrast from the same reference image
- Standard deviation was used as a measurement of noise and the intensity drop across a hard to soft tissue interface was used for contrast
- New models were produced using observed trends for each output with varying kVp and mAs

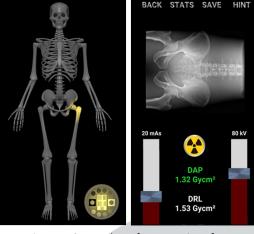


Figure 1: Screenshot of app user interface

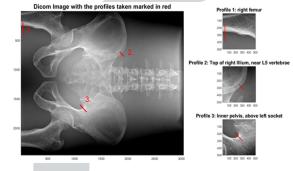


Figure 2: X-ray image with the profiles used for contrast analysis marked in red

Results

- New model created for DAP prediction: $DAP = ((8.182 \times 10^{-9}) \times kVp^2 \times mAs \times Area) + 0.01486$
- Average DAP error decreased from 19.71% in the original app to 8.39% using the new model - Figure 3
- Average noise error decreased from 35% to 27%
- Original noise model was linear. New noise relationship now matches observations :

Noise Ratio =
$$\left(8.25 e^{(-7.72 \times Dose \, Ratio)}\right) + 1$$

- Contrast produced in the app did not represent the true relationship - Figure 4
- A new relationship between kVp, mAs and contrast has been determined to inform a future image production algorithm

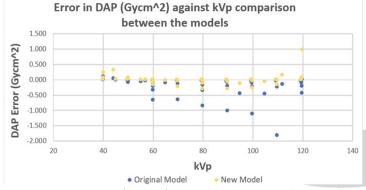


Figure 3: Error in DAP (Gycm^2) against kVp comparison between the original and the new model

Conclusions All objectives have been fully or partially achieved This project has produced both immediate improvements to the app and the necessary

- information for further development
 Two new physics models (for DAP and noise) have been produced
- The existing image contrast performance was the weakest and requires significant modification, beyond the scope of this project

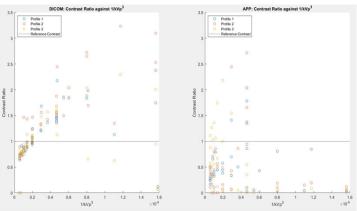


Figure 4: Comparison of contrast ratios in the DICOM images (left) and the App generated images (right)

