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Abstract. Self-assembly, the self-organized creation of structures com-
posed of independent entities, represents a challenging class of problems
for swarm intelligence. In this report, we present some preliminary results
on pattern formation carried out by a group of simulated robots. We have
defined a control architecture based on probabilistic choices of different
basic behaviors. This architecture allows us to define the behavior of the
robots, such that their interactions lead the group to form a desired pat-
tern. In order to better understand the dynamics of the pattern formation
task, we have applied a methodology composed of the following steps:
first, the self-organizing process that leads to the formation of a partic-
ular pattern is investigated, producing a suitable mathematical model.
Then, systematic experiments are conducted in simulation to estimate
the parameters of the model. Finally, the predictions of the mathemat-
ical model are compared with the simulation results. This methodology
is applied to the chain and cluster formation tasks, and the obtained
results are reported.

1 Introduction

Self-assembly, the self-organized creation of structures composed of independent
entities which are autonomous in their control, occurs in a wide range of natural
systems ranging from chemistry to biology (for a review see [3]). A particularly
interesting form of self-assembly is observed in social insects, which create dif-
ferent types of structures by physically attaching to each other [2, 1]: curtains,
festoons, ovens, thermoregulatory clusters, swarms, bivouacs, bridges, doorways,
pulling chains and rafts are all examples of self-assembling in social insects. Self-
assembly represents a challenging class of problems for swarm intelligence [2]:
the study of how collectively intelligent systems can be created by a number of
simple autonomous agents.

Swarm intelligence is the main inspiration for the Swarm-bots project, within
which the work presented in this report is carried out. The project aims to
create a swarm-bot, a self-assembling and self-organizing artifact, composed of
smaller mobile robots, called s-bots. The s-bots can aggregate to form a swarm-
bot when necessary or the swarm-bot can split up into its s-bots when not.



Besides aggregation, a swarm-bot can change its shape on-line and has adaptive
capabilities to adapt to its environment (see [4] for a more detailed description).
The swarm-bot concept lies between two main streams of robotics research:
collective robotics [6, 5] and metamorphic robotics [9, 11]. In collective robotics,
autonomous mobile robots interact with each other to accomplish a particular
task. However, unlike s-bots, they do not have the ability to attach to each other
by making physical connections. In metamorphic robotics, the system consists
of connected self-contained modules that, although autonomous in their move-
ments, remain attached to each other, lacking the full mobility of s-bots.

One of the main goals of the Swarm-Bots Project is the design of swarm
intelligent control algorithms that let a group of autonomous mobile robots self-
assemble. In this report, we focus on one of the basic tasks of self-assembling
systems: spatial pattern formation. In particular, we study chain and cluster
formation by a group of s-bots. These patterns are static in the sense that they
do not move in the environment. Nevertheless, patterns are dynamic in the sense
that each robot composing them is able to move, connect and disconnect thus
modifying the pattern.

In order to understand the dynamics that leads the swarm of s-bots to self-
organize in certain patterns, we propose a methodology based on the analytical
modeling of global features of the pattern formation task [7]. This methodol-
ogy consists of three main steps: first, a suitable analytical model describing
the pattern formation task is defined. Second, the model parameters are esti-
mated from systematic experiments of the simulated system. Finally, the global
behavior predicted by the model is compared with the system. Once validated,
the analytical model can be used to predict the group behavior under certain
conditions, or it can serve as a feedback tool in the s-bot control design.

This work has been carried out in a simulated environment, described in
Sec. 2. We have designed a control architecture that allows us to define the be-
havior of a single s-bot. The self-organized global pattern emerges from the nu-
merous interactions between s-bots. The control model is based on probabilistic
activation of basic behaviors, and it will be described in Sec. 3. Section 4 intro-
duces the pattern formation task and describes the peculiarities of the chains
and clusters formation. In this section, the behavior of a single s-bot is also
detailed. Then, chain and cluster patterns are analyzed following the described
methodology respectively in Sec. 5 and Sec. 6, and the obtained results are pre-
sented. Finally, the proposed methodology is discussed under the light of the
experimental results in Sec. 7, while Sec. 8 concludes suggesting some future
research directions.

2 Simulation

We have developed a simulator to study the swarm-bot control algorithms. Fig-
ure 1 shows three groups of s-bots! in the simulation environment. Each circle

! The mechatronic concept is described in more details in [8].



represents an s-bot. Two different types of s-bots are shown on the left and right
side of the figure. The color of the ring shows the type of the s-bot. The rectan-
gular tentacle placed on the body represents the gripper. The inner circle shown
on the body denotes a controllable light placed on top of the s-bot for signaling.

An unconnected A turned on light
gripper

@
G

Color of the s=bot A connected
An s—bot gripper

Fig. 1. Left and right side: two different types of disconnected s-bots. At the center,
the lower s-bot gripped the upper one. This is indicated by a gripper that is longer
and darker. The s-bot to the left remains unconnected to the two, although it is within
gripping distance to the upper s-bot. A black inner circle represents a turned off top
light (such as the one on the leftmost s-bot), and a lighter colored one represents a
light that is on. The light of the rightmost s-bot in the figure is on, whereas the lights
of the other s-bots are off.

The movement of the s-bot is modeled similar to that of a differential drive
mobile robot. The control of the movement is discretized to guarantee that the
s-bot is always positioned on the nodes of a hexagonal grid. This simplification
made the implementation of connecting and disconnecting of the s-bots easier.

When not gripped, the s-bots can move freely in the environment guided by
their sensors. However, when gripped, an s-bot loses its mobility. For instance,
the upper s-bot, shown in a group of three at the center of Fig.1, is immobilized
since it is gripped by the lower s-bot. All the other s-bots in the figure are free
to move since they are not gripped by other s-bots. Physical pushes are not
considered at this level of simulation.

The s-bots are equipped with different short-range and long-range sensing
and signaling modalities. All the signaling and sensing is modeled as a light
source/light sensor pair. The signal emitted by a source decreases in intensity
with the square of the distance. The sources are characterized by the intensity,
color, and the beam width of the signal. The top light? of the s-bot, described
above, is an omnidirectional source. An s-bot type is signaled by its color. To
make the orientation of an s-bot visible, three colored light sources are placed

2 In the rest of the report, this is referred as the light that is turned on or off by the
s-bot.



uniformly around the s-bot. These are called the left, right and the rear lights
of the s-bot.

The sensors are directional and can sense the color and the intensity of the
signal within their viewing angle. On the s-bots, short-range sensing is achieved
by six proximity sensors, uniformly distributed around the body of the s-bot.
They allow the s-bots to sense the presence of other objects and robots in the
immediate vicinity. The long-range sensing is achieved by six directional light
sensors, placed uniformly around the s-bot. Through all these sensors an s-bot
can sense the top lights when they are on, the type as well as the orientation of
other s-bots.

It is important to note that there is no explicit communication between the
s-bots. The coordination between the s-bots takes place solely through their
embodiment, the connections among them, and the signals emitted.

3 Control Model

The control architecture of an s-bot is based on the probabilistic activation of
basic behaviors, such as the attraction or repulsion from light sources. It has
been defined for the purpose of generalizing the definition of the s-bot behavior,
being as much independent as possible from the given task. The s-bot control
architecture is defined as a tuple:

<S’A7‘BJ,P7 SJ h7p>7 (1)
where

— S is the set of sensors,

— A is the set of actuator commands,

— B is the set of basic reactive behaviors b : RIS| — A,

P is a set of parameters, i.e. activation probabilities,

s: S — R is a sensing function that associates to each sensor its reading,

— h: RISl - Nis a contest function defining the current context the s-bot has
perceived through its sensors as a natural number function of the given task.

- p: Nx P — B?is a probabilistic activation rule that selects three basic
behaviors at each time step.

Sensors. The set S contains all the sensors described in Sec. 2. In particular,
each element is defined as a pair (type, offset), which refers respectively to the
sensor type and the offset angle with respect to the s-bot heading, making
it possible to differentiate between all the sensors.

Actuator Commands. As described in Sec. 2, an s-bot has essentially three
actuators: movement, light and gripper. The set A refers to actuator com-
mands that can be issued to actuators in order to perform a given action. It
can be partitioned into three subsets, A,,, 4; and A, referring respectively
to the movement, light and gripper commands.



Basic Behaviors. The set B accounts for basic behaviors. Even in this case, it
can be partitioned into three subsets, By,, B; and By, referring respectively
to movement, top light and gripper actuation. These subsets contain basic
behaviors that are mutually exclusive, i.e. only one from each subset can be
executed during the same time step. Behaviors belonging to different subsets
can be executed in parallel, since they control different s-bot actuators. The
movement behaviors (B,,) are:

— Light Attraction (LA): the s-bot moves in the direction of the light in-
tensity gradient.

— Light Repulsion (LR): the s-bot moves in the opposite direction of the
light intensity gradient.

— Robot Attraction (RA): the s-bot is attracted by the presence of other
s-bots, detected by the proximity sensors distributed around the s-bot
body. The proximity sensors have a limited sensing distance, thus the
robot attraction vector relies only on local information.

— Robot Repulsion (RR): the s-bot is repelled by the presence of other
s-bots.

— Random Movement (RM): the s-bot moves in a random direction.

The light behaviors (B;) are:
— Light On (ON): the s-bot turns on the top light.
— Light Off (OF): the s-bot turns off the top light.
The gripper behaviors (B,) are:

— Gripper Open (GO): the s-bot opens the gripper.

— Gripper Close (GC): the s-bot tries to connect a neighboring s-bot by
closing its gripper.

All the subsets have a standard null behavior that keeps the state of the
s-bot unchanged.

Parameters. The set P refers to control parameters. In particular, P refers
to activation probabilities. Each basic behavior b € B has an associated
activation probability Py(i) € P, where i € N is an index referring to the
s-bot context, as it is defined by the h context function (see below). Thus,
the activation probabilities depend on the context of the s-bot. The actual
correspondence between the s-bot context and the activation probabilities is
given by a matrix P, where each row refers to a different context and each
column to a particular basic behavior:

P={]Di,(}=Pb(i)7izla---anai)zla-"alBl}a (2)

where b is an index referring to the basic behavior b € B and n is the
number of possible contexts for a given task. The following properties must
be satisfied:

Vi, Y R(i)=1, > Ri) =1, Y p)=1, (3)

bEBm beB beBy

Equation (3) accounts for the mutual exclusion of basic behaviors belonging
to the same subset, assuring that one action is chosen at each time step from
all the subsets.



Sensing Function. The sensing function s simply returns the sensor reading
of each sensor (type, offset) € S, which is in general a real number. The
sensing function applied on all the available sensors returns a reading vector
5(S) = S € RISI. This is used to determine the s-bot context h(S) and the
actuation commands b(S).

Context Function. The context function A maps the sensor reading vector S
to a natural number representing the context in which an s-bot is, related
to the particular task the s-bot is executing. In other words, the context
function returns the row index of the activation probability matrix P, thus
selecting a set of probabilities used for the definition of the overall s-bot
behavior. Therefore, the context function influences the overall behavior of
the s-bot changing the activation probabilities of certain basic behaviors. In
Sec. 4 we will analyze the context function for the chaining and the clustering
task.

Probabilistic Activation Rule. The function p accounts for the probabilistic
activation rule, which depends on the context index and the probability ma-
trix. In particular, it returns three behaviors belonging to the three different
subsets described above:

p:NxP — By, x By x By (4)

The selection strategy is the well known roulette wheel selection, stating
that each basic behavior b has a probability proportional to Py(h(S)) of
being activated at each time step.

Having described the different parts of the probabilistic control architecture,
we can summarize the features of this model composing the elements of (1) in
the following equation:

p(h(s(5)),P)(s(S)) = (am, a1, a9),  am € Am, a1 € A, ag € Ay (5)

which states that the activation commands (am,a;,a,) are defined by a prob-
abilistic selection of basic behaviors. The behaviors are applied on the reading
vector S = s(5), which is also necessary to define the s-bot context h(S). Fur-
thermore, the probabilistic activation rule relies on the probability activation
matrix P, which is defined by the set of parameters P.

It is worth noting that the only elements of (1) that depend on the particular
task are the context function h and the set of parameters P. They have to be
carefully defined in order to obtain the required overall behavior. As mentioned
before, in Sec. 4 we will present these task-dependent part of the control architec-
ture for chain and cluster formations. Except for these elements, the remaining
parts are totally independent from the task and allow to generalize the definition
of the control for a single s-bot.

4 Pattern Formation

As we have shown above, the behavior of a single s-bot is determined by simple
probabilistic choices. Nevertheless, the global pattern arises from the numerous



interactions between individuals. This is a common property in self-organizing
systems observable in nature [2]. Examples of pattern formation may be found
in physics, chemistry and biology [3]. Chains and clusters are a particular type
of patterns, and they are observable in many animal societies. In this section we
will describe some examples of chain and cluster formation in natural systems,
which are a starting point for the definition of the behavior of a single s-bot and
thus of the swarm-bot.

4.1 Chaining Behavior

A chain pattern can be defined as a linear sequence of basic elements, each one
connected to at most two other elements. Various species exhibit this pattern,
a well-known example being a duck followed by its ducklings. However, it is
worth noting that the chaining behavior of ducklings is not an example of self-
organization, due to the presence of a leader, the mother duck, which governs
the whole group.

An interesting example of self-assembled chains is given by polymers. Poly-
merization is a chemical process that leads to the creation of long chains of
monomers, that is, basic elements of a chain. After an initiating reaction with
a catalyst reactant, free monomers connect to each other to form chains. These
chains attract other free monomers to form longer chains. The process terminates
when another reactant molecule connects to the chain, completing the electron
octet of the last element. Thus, the individual behavior of a single monomer is
a probabilistic connection to other monomers or chains.

The polymer example has many similarities with the formation of chains in
the robot swarm. In this case, s-bots are distributed uniformly in the environment
and are attracted by other single s-bots to start a chain formation. When an s-
bot connects to a chain, it turns on its top light, signaling the presence of a chain.
Other free s-bots, being attracted by the light, are stimulated to connect to an
existing chain, making the pattern formation more efficient. As in the polymer
example, robot chains present physical connections, in order to serve as support,
restraint or transmission of mechanical power [8] or to confer to the system
elasticity and flexibility properties to better adapt to the environment [10].

As described in Sec. 3, the individual behavior of an s-bot is the result of
the probabilistic activation of basic behaviors. The context function h(s) and
the probability matrix P defines the overall behavior of a s-bot. We will now
describe these two characterizing parts of the behavioral model. The context
function classifies the sensor readings into some relevant situation, pictured in
Fig. 2. The corresponding activation probabilities are also shown. At each time
step each s-bot evaluates its context and performs some action. The following
list explains the actions performed in each possible context:

CO: if an s-bot is near another s-bot or a chain, and does not see a connection
point, that is the rear of the other s-bots, repulsion movements have non
zero probabilities, in order to let the s-bot go away and search for other
connection points. No gripping and no light signaling are performed in this
state.



C1: if no s-bot is around, random walk and attraction behaviors have non-zero
probabilities, allowing the search for other s-bots or chains. Still no gripping
and light signaling are performed.

C2: if an s-bot is nearby and its connection point is reachable, attraction toward
it and random movement will try to obtain the right alignment to connect.

C3: if an s-bot sees another s-bot ahead, it closes its gripper with a certain
probability P, = 1 — P,;. Here, P, refers to the probability of disconnection,
which influences the chain length distribution (see Sec. 5). The top light is

turned on.
C4: if an s-bot is the head of a chain, it switches on its light and does nothing
else.

C5: if an s-bot is in the middle of a chain, it turns on the top light and maintain
the connection.

movement gripper top light

0: O O 1: O LA |LR|RA|RR|RM|GO| GC |ON|OF

O v 0.00{0.10/0.00{0.50|0.40{1.00{ 0.00 [0.00|1.00

o O 0.25(0.00/0.35{0.00|0.40{1.00| 0.00 [0.00|1.00
“@reo-o

0.00{0.00/0.50{0.00]0.50{1.00{ 0.00 [0.00|1.00
0.00{0.00/0.00{1.00|0.00{ Py |1 — P;|1.00|0.00
0.00{0.00{0.00{0.00|0.00{1.00{ 0.00 {1.00]0.00
0.00{0.00{0.00{0.00|0.00{0.00{ 1.00 |1.00]0.00
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Fig. 2. Perceived contexts and the corresponding activation probability matrix. The
null behavior of each subset is not shown: its activation probability can be inferred
from the other probabilities and from (3).

It can be noticed that robot chains, different from the polymers, do not grow
only from one side, as s-bots can connect to the rear of other s-bot and the head
s-bot of a chain is allowed to connect any other s-bot (context C5). The simple
probabilistic rules and the probability matrix described are sufficient to generate
chains: starting from a uniform distribution of s-bots in the environment, it is
possible to observe the formation of multiple chains of varying length (see Fig. 3).

4.2 Clustering Behavior

Clusters can be defined as aggregations of objects, and they are observable
in many insect species. However, it is not always possible to refer to self-
organization. In many cases, individuals react to environmental cues such as
illuminance, temperature or humidity, which serve as a template —a particular
feature of the environment that influences the pattern formation— for the ag-
gregation process. On the contrary, self-organization in clustering implies some
local interaction between individuals, generally in the form of attraction toward
other members of the group.
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Fig. 3. Chaining: initial distribution of s-bots (left side) and the chain formed after
5000 time steps (right side).

An interesting example of self-organized clustering is observed among bark
beetle larvae [3]. These larvae lay pheromone while feeding and react to the pres-
ence of pheromone moving in the direction of the gradient of its concentration.
The process is auto-catalytic, that is, an increasing density of larvae corresponds
to an increasing concentration of pheromone and vice versa. The movement of
larvae is given by two components: movement toward zones of higher concen-
tration of pheromone and random walk. Another behavioral component is the
thigmotazis, the tendency of maintaining a contact with neighbors. It results
that the cluster sizes and distribution deeply depends on the initial density and
distribution of larvae.

The clustering behavior of the s-bots is implemented in a way similar to that
of the bark beetle larvae. The s-bots are attracted by light and by other s-bots,
and turn on their light with a certain probability. Light and s-bot attraction
work as the pheromone concentration and thigmotaxis, while the light emission
corresponds to the pheromone laying.

In this case, the context function h(S) is related to the number of neighbors
felt by a single s-bot. Thus, using local information, an s-bot can evaluate either
if it is inside a cluster or in its periphery, and can guess how good the cluster is
from the number of neighbors. The more neighbors it has, the better its position
in a cluster formation. The activation probabilities of the basic behavior for a
given context are listed as a row in the parameter matrix P, shown in Tab. 1.
It can be noticed that as the number of neighbors increases, the probabilities
of all movement behaviors decrease, in order to let the s-bot search for clusters
when alone and stay in formation when clustered. The gripper is never used for
clustering, and the top light is switched on with a probability P, which is used
to modulate the cluster size distribution, as it will be shown in Sec. 6.

The overall behavior of the robot swarm results in the formation of multiple
clusters of different sizes. The initial disposition of s-bots in the environment
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Table 1. Activation probability matrix for the clustering behavior

movement gripper top light
|State] LA | LR [ RA | RR [RM | GO | GC [ON] OF |

S0 | 0.30 | 0.00 | 0.20 | 0.00 | 0.50 | 0.00 | 0.00 | P, |1 — P,
S1 |0.20 | 0.00 | 0.20 | 0.00 | 0.50 | 0.00 | 0.00 | P, |1 — P,
S2 |0.15(0.00|0.15|0.00 | 0.50 | 0.00 | 0.00 | P, |1 — P,
S3 | 0.10 | 0.00 | 0.10 | 0.00 | 0.30 | 0.00 | 0.00 | P, |1 — P,
S4 |0.10 | 0.00 | 0.05 | 0.00 | 0.10 | 0.00 | 0.00 | P, |1 — P,
S5 |0.10 | 0.00 [ 0.05 | 0.00 | 0.05 | 0.00 | 0.00 | P, |1 — P,
S6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | P, |1 — P,

is chosen randomly and uniformly. A snapshot of a formed cluster is shown in
Fig. 4.

@
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Fig. 4. Clustering: initial distribution of s-bots (left side) and final cluster (right side).

5 Chain Formation

In this section we analyze the chaining behavior described in Sec. 4.1, in order
to understand the dynamics that leads to a certain distribution of chains. In
particular, we are interested in studying the mean chain length in relation to
the probability of disconnection P,;. For this purpose, we have developed an
analytical model that can predict the distribution of chain lengths, which will
be presented in Sec. 5.1. The parameters of this model can be estimated using the
simulated experiences. The estimation procedure will be described in Sec. 5.2.
Finally, in Sec. 5.3 the predictions of the mathematical model are compared with
the results of the simulations.
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5.1 Mathematical Model

The mathematical model used to describe the chaining behavior is similar to
those used in modeling polymerization processes. Given N robots, X;(t) refers
to the average number of chains of length 4 (called i-chain) at time ¢, where
i € [1, N]. Thus, we have N variables, whose evolution in time can be described
by a set of N differential equations. The time dependence of the variables is
omitted to simplify the notation.

N—-1 N

Xl = — Z kzXle + Zein - leIZ + €2X2 (6)
i=1 =2

Xz' =ki1 X1 X1 +ep1 Xip1 — ki Xa X — e X (7)

This model explains how chains grow and shorten according to given connec-
tion and disconnection rates. In general, these parameters vary over time and
are depending on the chain length. The connection rates are represented as an
N-dimensional vector K, each element k; = k;(t) referring to the rate of connec-
tion of a robot to a i-chain. Similarly, the disconnection rates are represented by
the vector E, and the rate of disconnection from a i-chain is given by its element
€; = €; (t)

Equation (6) accounts for the variation of the number of chains of unit length,
that is, free robots: they can connect to other chains (the first term in the right
side of (6)), thus decreasing X; which is increased by other robots disconnecting
from other chains (second term). The third and fourth terms takes into account
the formation and disband of 2-chains, which both involve an additional robot.
Equation (7) accounts for the number of i-chains: the increase in the number
is due to the growth of shorter chains or to the shortening of longer chains
as represented by the first and second term in (7). The decrease is due to the
connections/disconnection of free robots to/from them, accounted by the last
two terms in (7). The upper limit condition is given by Xn41 = 0, as it is not
possible to have a chain of length NV + 1. Furthermore, the analytical model has
the following properties:

N N
Y iXi =N, D iXi=0 (8)
=1 =1

which states that the number of robots must be constant during time. In the
following section we describe the parameter estimation procedure from the sim-
ulations of the swarm of robots.

5.2 Parameter Estimation

The described analytical model needs the parameter vector K to be estimated,
in order to have a strict correspondence between the model and the simulations.
Estimating these parameters is not trivial. Often, the estimation procedures are



12

limited by the particular system being studied: for example, in polymerization,
it is possible to have quantitative evaluations of some parameters by means of
the observation of the system as a whole. In our case, as the observed system is
simulated, we have a full access to it and to each individual state. Nevertheless,
changes to the control of the s-bots or to the system have to be avoided or
carefully designed, as they may introduce additional errors in the estimation
procedure.

We will now introduce the estimation procedure for a given parameter k;,
which corresponds to the connection rate of a single s-bot to a i-chain. The
connection rate can be roughly defined as the reciprocal of the average time an
s-bot needs to connect to an i-chain. Starting from this definition, we conducted
systematic experiments to estimate this value. Initially, 160 s-bots are placed in
an arena of 42 x 42 cells. This makes the initial spatial density close to the one
observed in the simulations. Robots are either free or part of an i-chain. Thus,
among the 160 s-bots, X, are free robots while the rest is placed in X; i-chains
and cannot move at all. These chains can be seen as “seeds” to which a free
s-bot can connect. The initial disposition of free robots and chains is randomly
uniform. We measure the time T, until the first connection between a free s-bot
and a seed. Under the assumption that X; and X; do not change during a single
experiment, k; is estimated by:

i — )
(Tc> Xl Xi

where (T,) is the average time on 100 runs. The presence of X; and X; are
necessary because their value influences T,: the more the free s-bots and seed,
the shorter the time until the first connection. It could be possible that free
s-bots connect to each other, thus changing X, during time. To overcome this,
the value used for X is high enough to assure that, if any connection happens,
the variation is proportionally small. Moreover the behavior of free robots after
a connection was slightly changed in such a way that they ungrip immediately
if they connect to other s-bots. In this way, the formation of small chains be-
tween them is prevented, because it could interfere with the estimation of k;.
Disconnection rates correspond to the disconnection probabilities P; introduced
in Sec. 4.1, thus they do not have to be estimated. The result of this procedure
is shown in Fig. 5. It can be noticed that the connection rates to free s-bots are
nearly six times those for a 2-chain. This suggests that the connection point to
a chain is more difficult to be reached by an s-bot, as the chain does not move.
Nevertheless, longer chain presents a slight increase in the connection rate, which
may be related to the bigger attraction a longer chain has on free s-bots. Further
insights in the parameter estimation results are given in the next section, under
the light of the comparison between the simulated system and the analytical
model.



13

0-00035 T T T T T T T
0.0003 - 1
\
0.00025} ]
|
0.0002 1 1
s
0.00015| §
\
\\ NVAV A A\
0.0001 | PASAVAS VAR A
=2
5e-051| §
5 10 15 20 25 30 35 40
chain lengh
Fig. 5. Estimated k; values
5.3 Results

We present here the results obtained with the analytical model and the corre-
sponding simulations. Fig. 6 shows the distribution of a simulated population
of 40 s-bots for different disconnection probabilities, namely P; = 0.01 and
Py = 0.07. The values in the graphs represent the average number of s-bots that
have been observed in chains of different length and is evaluated by the following
expression: .
iX; 1 .

— = — iX; 10

Z;'V:1 JX;j N ' (10
where N is the total number of s-bots and X; is the mean number of chains of
length 4. These graphs describe well the effect of increasing the disconnection
probability: bigger values prevent long chains to appear.

In Fig. 7 we plot the mean length of chains to which in average an s-bot

belongs, depending on disconnection probabilities in the range [0,0.1] with in-
crement of 0.01. These values are evaluated by the following equation:

. N
Eé\;ﬁX@' 1 -2
== = — X;. 11
Zé\;ﬂXi Nz'—z1z Z .

For P; = 0, s-bots belong in average to chains that are three or four units
long. When increasing Py, first there is a little increase of this value, followed
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Fig. 6. Population distribution observed from the experiments evaluated during time-
step 2001 until 3000. Average on thirty experiments is plotted. Bars represent standard
deviations. The y axis is normalized to the number of robots
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Fig. 7. Comparison between experimental results and the estimated values for k;.



15

then by a strictly monotonic decrease. In the same figure, the analytical model
prediction obtained with the estimated k; is shown. The disagreement between
the curves is considerable.

In order to understand why this big discrepancy arose, we tried to find out a
better matching between the experimental data and the analytical model, under
the hypothesis of a given dependency between the connection rates k; and the
chain length i. We have hypothesized four different situations:

- k= IAci, where an under-estimation of the connection is envisioned.
— k; = a, where different length does not influence the connection rates.
— k; = « - i, where longer chains attract more s-bots than shorter ones.
— ki = %, where longer chains have lower connection rates.

The parameter a was hand-tuned in all cases. At this stage, we are inter-
ested only in a qualitative comparison, thus no statistical test but only a super-
imposition of different curves was performed, in order to observe which one shows
a better fit. The corresponding results are shown in Fig. 8.

12 T H T T T T T
experimental results——
k; = estimation * 50----------
ki = 0.00186547---------
10 k. = 9.32736€-05 * 1
< M ki = 9.32736e-05 / i------
5 b
s ° '
c !
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S 6 1
c
]
[}
S
4 i
2t ]

0 0.02 0.04 0.06 0.08 0.1
disconnection probability
Fig. 8. Comparison between different functions for k; and experimental results. All

functions are plotted in the range [1,12], thus truncating k; = ¢-9.3 1075, to see better
the differences.

The under-estimation hypothesis (k; = « - IAc,) has been tested with a = 50.
It fits the experimental data satisfactorily for low and high values of Py, but not
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in between. The constant value hypothesis (k; = a) results in a better fitting
for low Py, but it still presents a different behavior in the range [0.03,0.06].
The proportional hypothesis (k; = « - 4) is justified recalling that s-bots are
attracted toward light sources and longer chains creates a bigger attraction field
with respect to shorter ones. The obtained distribution results in a mean length
around 1 nearly for all Py, except for a peak of value 21 for P; ~ 0.003. Finally,
the inversely-proportional hypothesis k; = ¢ can be justified observing that
a longer chain attracts robots in average near its center, where there are no
possibilities of connections. Thus, an s-bot has to cover more space to reach the
rear or the front of the chain. This hypothesis gave better results than the others,
fitting well in [0, 0.6] but overestimating after this values.

None of the above functions fit completely the experimental data. Thus, it is
necessary to understand if the model and the parameter estimation process are
correct.

In general, a model is based on some assumptions and approximations that
make it not completely adherent to the modeled system. These simplifications
aim to identify some main features of the system, resulting in an easier and faster
tool used to make predictions on the system behavior.

Among these simplifications, the developed model does not take into account
any spatial information, which is related to robot-robot interactions. In fact, in
the model it is assumed that each robot has probability k; to connect to an -
chain in a time unit, discarding their relative positions. But robots are attracted
by light sources and other robots, thus their connection probability depends on
chain densities in the neighborhood of the robot. We will return to this point in
Sec. 6.3, referring to cluster formation.

The simplification used in the model can still be considered a good approxi-
mation in case s-bots and chains have, in average, a uniform spatial density. This
is not the case in the chaining behavior, where the first phase consists essentially
in a clustering behavior. Moreover, each formed chain creates an attraction field
for other s-bots from which it is hard to escape once caught in. This implies that
each chain has a cloud of robots around it, preventing them to perform a free
random walk all over the arena. A quantitative insight of this effect is given in
Fig. 9: we computed the minimum rectangular area that contains all the robots
during a normal run of our simulation. This measure gives us an estimation of
the area occupied by the robots, and it is inversely proportional to the mean
spatial density. Fig. 9 shows the results for three disconnection probabilities.
The ratio between the final and the initial areas is 0.43 for P; = 0.01, 0.20 for
Py =0.05 and 0.15 for P; = 0.1, confirming a sensible increase in spatial density
during time.

The variation in spatial density may influence also the parameter estima-
tion process. We have estimated the connection rates k; having an initial spatial
density close to the one observed in the simulations, and we kept it constant.
However, as the spatial density changes over time, this may influence the connec-
tion rates. Moreover, the disconnection probability determines also the amount
of change in spatial density, suggesting that it can influence the k; as well. Thus,
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Fig. 9. Area occupied by the robots during simulations for chain formation. The mean
over ten runs is plotted. Bars represent standard deviations.

the connection rates seem to depend on both time and the disconnection prob-
ability.

These considerations suggest that, if we assume the correctness of the model,
a better experimental setup for the estimation of k; is required, in order to take
into account dependencies on time and on Pj.

6 Cluster Formation

In this section, we describe how the cluster formation is affected by some pa-
rameters of the s-bot behavior. Similar to the chain pattern, we are interested
in the distribution of cluster sizes as a function of the probability of switching
on/off the s-bot light. For this purpose, we present in Sec. 6.1 an extension of
the model used for chaining. Section 6.2 presents the modifications needed in
the parameter estimation process with respect to the procedure described in
Sec. 5.2. Finally, in Sec. 6.3 we discuss the obtained results.

6.1 Mathematical Model

Given N robots, X;(t) refers to the average number of clusters of dimension &
(called i-clusters) at time ¢t. A system of N differential equations is proposed to
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describe the dynamics of the X;:

X, = ng 2 k11 XE + 3N e i1 X; (12)
Z 12 =1 Jk,JXlX +Zz 32 1jez,JX
X; = —EN ’kl,]Xlx Yo lewX (13)

"‘E ki X1 Xi— J"‘EJ i1 €hi—iXj

where k; ; = k; ;(t) is the connection rate of j robots to a i-cluster, and, similarly,
ei,; = €;,j(t) is the disconnection rate of j robots from a i-cluster. The first row in
(12) accounts for the variation of the number of free robots due to two effects: the
formation of a j-cluster from free robots (first term) and the complete disband
of a i-cluster. The second row accounts for two different events: the growth of
a i-cluster of j robots (first term) and the disconnection of j robots from a -
cluster. In (13) the first row describes the decrease of X; due to the growth of
an i-cluster (first term) and for the disconnection of j robots from an i-cluster
(second term). The second row describes the increase of X; due to the growth of
a (i —j)-cluster when j robots connect to it (first term) and the disconnection of
(j — @) robots from a j-cluster (second term). Even in this case, the upper limit
condition is simply given by Xn41 = 0.

This model is clearly an extension of the model used for chaining, allowing
multiple connections per time step. In fact, if we substitute in (12) and (13)
ki; =0, e;; =0forall j > 1, that is, we impose that no more than one robot per
time step can connect or disconnect, then we obtain (6) and (7). The parameters
of the model can be collected in two matrices, K and E. The estimation process
that defines this parameters is explained in the following section.

6.2 Parameter Estimation

The parameter estimation process for clustering is aimed to define the K and
E matrices from systematic experiments. The faster dynamics of the clustering
process and the higher number of parameters to be estimated make this task
more complex than in the case of chains formation. The procedure described in
Sec. 5.2 is adapted distributing free robots and cluster seeds randomly in the
environment and observing the first connection to and disconnection from a seed.
This methodology leads to the following estimators:

ki,l = (Z_Z)ﬁ (14)
s 1
ez,l - (%> X{) (15)

where T, (T,) is the time elapsed until the first connection (disconnection) of
a single s-bot to (from) a i-cluster, and n. (ng) is the number of contempo-
rary connections (disconnections). In this case, contemporary connections or
disconnections appear very often, thus it is necessary to consider them in the
estimation. However, this methodology has drawbacks for the clustering case,
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ranging from the complexity of estimating the k;; and the e;; for 7 > 1 to
problems given by the fast dynamic of the clustering process, which implies a
non-negligible dependency from the starting condition and an high variance of
the results, above all for cluster seeds of small size.

A different parameter estimation methodology has been proposed, in order to
overcome the above described problems. In this methodology, a single i-cluster
seed of non-moving s-bots is placed in the environment. Initially connected to
this seed, an additional s-bot is free to move following its control rules, thus
connecting and disconnecting from the seed. During time, we compute the con-
nection and disconnection rates of the free s-bot as described by the following
equations:

kin(t) ;:—Eg (16)
éir11(t) = T%f—gg, (17)

where n.(t) (nq(t)) is the number of connections (disconnections) observed un-
til time ¢, and Ty(t) (T.(t)) is the time spent by the s-bot unconnected from
(connected to) the i-cluster. In other words, T4(t) (T.(t)) counts the number of
possibilities that the s-bot has to connect (disconnect), and n.(t) (nq(t)) counts
the number of possibilities that are effectively exploited. The so computed values
vary over time and usually reach a stable state after few thousand of time steps.
Thus, the estimators are finally given by:

kin = (kin(T)) (18)
ir1,1 = (€ir1,1(T)), (19)

where the average is made over 20 experiments and 7' = 10000 is the time step
at which most of the experiments have shown a reached stability of ;1 () and
éi+1,1(t). Figure 10 shows the estimated connection and isconnection rates for
a probability of switching on the light P, = 0.30, along with their standard de-
viation. It can be noticed that the connection rate increases with the cluster
size, while the disconnection rate decreases. The standard deviation in connec-
tion rates increases with the cluster size, suggesting that the experiments have a
high variability, due to the difficulty of disconnection from the cluster, hypothesis
confirmed by the disconnection rate nearly equal to zero.

The same methodology can be applied to the estimation of k; ; and e; ;, given
j > 1. Tt is sufficient to place j moving s-bots connected to a given i-cluster and
measure the following quantities:

s = 20 @
€itj,i(t) = —n;f; 0 (21)

where nl(t) (nfi(t)) is the number of contemporary connections (disconnections)
of j s-bots observed until time ¢, and T3(t) (TZ(t)) is the time spent by all
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Fig. 10. Connections and disconnection rates for a single robot to a i dimension cluster
(ki,1(t) and é;,1(t)), estimated in experiments with probability of switching on the light
P, =0.30

Jj s-bots unconnected from (connected to) the i-cluster. The estimator can be
obtained extending in the same direction (18) and (19).

This procedure can be criticized because of its limited fitting with the exper-
imental situation, where it is not always present a single cluster. However, when
the cluster formation process reaches its stationary state, the different clusters
that have formed are enough distant from each other to not interfere, making
possible to simplify the analysis to a single cluster. This consideration justifies
the applied estimation procedure.

6.3 Results

The analytical model parameters are estimated for different probabilities P, of
switching on the light. In particular, we analyzed two probability values, corre-
sponding to different stationary states: P, = 0.03 always leads to the formation
of a single cluster, while P, = 0.30 results in multiple clusters of different sizes.
The data are extracted simulating a swarm of 40 s-bots randomly positioned at
the beginning of each experiment in a square area of 21 cells side. We measured
the cluster sizes at the end of 100 experiments, in order to evaluate the distri-
bution of the s-bot population over the different cluster sizes. This measure is
exactly the same one described in (10), which defines the percentage of s-bots
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involved in a cluster structure of size i. Averaging the values obtained in the
different experiments, we obtain the distribution shown in Fig. 11.

Simulations (1000 time steps)
0.5 T

T
linel ——

0.4 B

0.35 - 1

0.25 - 1

0.2 4

Population Percentage

0.1 1

0.05 - 1

O L | | | | | | 1 1
0 5 10 15 20 25 30 35 40 45
Cluster Size (i)

Fig. 11. Cluster distribution obtained from simulations having P; = 0.03.

It is worth noting that this distribution corresponds to a single cluster in-
volving all the s-bots (see also Fig. 4). However, a non zero percentage of robots
statistically belong to slightly smaller clusters, and free robots are also present.
This is explained observing that the cluster structure is dynamic and many s-
bots can disconnect and connect in each time step, leading to the observation of
different cluster sizes.

A similar behavior is predicted by the analytical model, where the same mea-
sures have been computed. The analytical model has been numerically integrated
starting from the condition X; = N, which represent an initial population of
free robots. The obtained results after 1000 time steps are shown in Fig. 12.
It can be noticed that the distribution of the robot population is qualitatively
similar. Nevertheless, the analytical model has not reached the stationary state,
as some small clusters are still present.

The stationary state is reached after 100000 time steps, as can be observed
in Fig. 13. In this case, the analytical model and the simulations show results
quantitatively similar.

Similar experiments have been carried out for probability of switching on
the light P, = 0.30. In this case s-bots keep the top light on in average for more
time, resulting in a stronger attraction between individuals. Thus, we expect that
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Fig. 12. Cluster distribution obtained from the mathematical model after 1000 time
steps, having P, = 0.03

the number of small clusters increases, because even a small cluster creates an
attraction field strong enough to trap s-bots in its neighborhood. This intuition
is confirmed by the experimental results obtained from simulation, shown in
Fig. 14. It can be noticed that, in average, s-bots belong to medium-size clusters.

The analytical model has been used also in this case, and the corresponding
results, obtained after 1000 time steps, are shown in Fig. 15. It can be noticed
that results are qualitatively similar. In fact, the analytical model correctly pre-
dicted the coexistence of medium-size clusters. One important difference is in the
number of clusters of dimension 40, the maximum size. The simulation suggests
that in some cases a single cluster may arise, but the analytical model predicts
that the appearance of such a formation is rare. Thus, as in the case of P, = 0.03,
we can suppose that the analytical model has not reached the stationary state
after 1000 time steps.

The analysis of the theoretical distribution in the stationary state is given in
Fig. 16, where the mathematical model is simulated for 100000 time steps. Evi-
dently, they are different from what we expected: the analytical model converges
to a single-cluster solution, even more stable than in the case of P, = 0.03 as the
values of the smaller clusters are negligible.

These results are useful to explain an important feature of the introduced
model that is not fully predictable: the analytical model does not take into
account the spatial information, which we supposed being embedded in the es-
timated parameters K and E. It can be observed that the way in which we
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Fig. 13. Cluster distribution obtained from the mathematical model after 100000 time
steps, having P; = 0.03.
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Fig. 14. Cluster distribution obtained from simulations having P; = 0.30.
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Analytical Model (1000 time steps)
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Fig. 15. Results from the analytical modeling of cluster formation after 1000 time
steps, with P, = 0.30.
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Fig. 16. Results from the analytical modeling of cluster formation after 100000 time
steps, with P, = 0.30.
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estimated the parameters lacks of the required information about a spatial dis-
tribution. However, a deeper insight in the analytical model show us the following
property: every time an s-bot disconnects from an i-cluster, it is referred in the
model with a decrease in the average number of i-cluster X; and an increase of
the average number of free robots X;. Thus, X; represents a pool from which
every X; can gather robots. This behavior of the model does not represent in any
case the simulated situation in which, when a s-bot disconnect from a i-cluster,
it reconnect more likely to the original cluster than to another one, due to the
higher attraction from the original cluster.

7 Discussion

The process of self-assembly is complex and any attempt to design controllers
for individuals to self-assemble into a desired pattern will be greatly helped by
a better understanding of the system as a whole. The proposed methodology is
aimed to complement the design of the controllers with analytical modeling of
the system.

Figure 17 depicts our approach by putting the studies presented in the pre-
vious sections into a framework. The upper left box represents the actual system
for which the control algorithms are developed. Within the context of this report,
the system is the simulation of a swarm of s-bots controlled by the described
architecture (see Sec. 3).

Simulator Analytical Model
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An analytical model of the system, depicted as the upper right box, is defined.
The model is parametrized in such a way that the parameters are measurable

Fig. 17. Experiment-Theory
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from the actual system through systematic experiments. For instance in chaining,
the connection probability of single s-bots to chains of different lengths consti-
tuted such parameters. These parameters are then substituted in the analytical
model to make predictions about the global behavior of the actual system. In
chaining, for instance, the distribution of chain length is one of the global obser-
vations, that can be used to compare with the one obtained from the analytical
model. This comparison provides a cross-check for the analytical model, stating
that the model and the parameters measured are sufficient to model the behavior
of the actual system.

This cross-check, by itself, does not improve our understanding of the system.
However by confirming its equality to the actual system, it paves the way for
us to claim that other analyses made with the analytical model are likely to be
transferable to the actual system.

In our project, differently from similar studies in chemistry and biology, the
goal is to use the analysis obtained from the analytical model as a guide to
the design of the s-bots control model. For instance, if the analytical model
shows that one of the control parameters of the model needs to be within a
certain range to obtain a particular global behavior, then we can concentrate
on changing the control to move the measured value of that parameter to that
particular range. Although we do not claim that this methodology will provide
us with such ability, we believe that it will guide us in the right way.

However, the obtained results are still not satisfactory. The correctness of the
developed model is confirmed by the observed dynamics, that are very similar to
the real case in both chaining and clustering. Nevertheless, in chaining the sta-
tionary state reached by the model can be compared only qualitatively with the
actual results, and in clustering this does not happen at all. As we mentioned
in Sec. 6.3, it is likely that the developed model lacks of spatial information,
which plays a major role in defining the stationary state. This information must
be coded explicitly or implicitly in the model: explicitly, adding the dependence
from space or time to the connection and disconnection rates, dependency that
has been neglected till now; implicitly, improving the parameter estimation pro-
cess in such a way that make it responsible for the missing information, under
the assumption that these parameters can be considered constant in time.

Furthermore, some other discrepancies between the analytical model and the
swarm simulations must be taken into account:

— the simulations are carried out in discrete time, while the analytical model
is integrated in continuous time. In order to have a better comparison of
the predicted and actual dynamics, it is required coherence between timings
that is currently missing;

— it seems that the long range interaction between s-bots is not taken into
account by the developed analytical model. This kind of interaction is also
related to spatial information, making an s-bot able to sense other robots
at very high distances. This kind of interaction is not present in the natural
systems that we take as inspiration, and therefore is not accounted by the
analytical model.
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Instead of updating the model in order to resolve these problems, we believe
that it is more important to have more realistic simulations. Working in a contin-
uous world and having a more realistic sensing will decrease or completely cancel
the above discrepancies between the analytical model and the simulations.

8 Conclusions

In this report, we presented a behavioral architecture for a swarm of robots which
has been demonstrated very effective for self-assembling tasks. This architecture
is independent from the particular task the robot have to accomplish, except for
the context function and the parameters matrix. Future developments can follow
two different directions: from one side, as the definition of the parameter matrix
is complex, genetic algorithms may be applied to evolve the parameters, using
the context function as a fitness function. On the other side, the architecture
can be modified in order to let the context function directly update a single set
of activation probabilities and make the system auto-adaptable to the specified
task. This solution is more similar to a reinforcement learning of the activation
probabilities, the context function playing the role of the reward function.

We also presented a framework for analyzing the self-assembling process us-
ing an analytical model. Although the obtained results are still not satisfactory,
we believe that a similar approach can help the designer to have a better un-
derstanding of the dynamics of the self-assembling process. This approach can
be used either to explain the process dynamics from a global point of view or
to make predictions on the parameters that govern it. Thus, future directions
concerns also a refinement of this methodology, along with an improvement of
the simulated environment toward more realistic simulations.
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