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Abstract. In this paper, we study aggregation in a swarm of simple
robots, called s-bots, having the capability to self-organize and self-
assemble to form a robotic system, called a swarm-bot. The aggregation
process, observed in many biological systems, is of fundamental impor-
tance since it is the prerequisite for other forms of cooperation that in-
volve self-organization and self-assembling. We consider the problem of
defining the control system for the swarm-bot using artificial evolution.
The results obtained in a simulated 3D environment are presented and
analyzed. They show that artificial evolution, exploiting the complex in-
teractions among s-bots and between s-bots and the environment, is able
to produce simple but general solutions to the aggregation problem.

1 Introduction

Aggregation is a task of fundamental importance in many biological systems. It
is of particular importance for the creation of functional groups of individuals,
because it is at the basis of the emergence of various forms of cooperation. In fact,
it can be considered a prerequisite for the accomplishment of many collective
tasks. These reasons motivate our interest in the study of aggregation within
the SWARM-BOTS project, whose aim is the development of a new robotic
system, called a swarm-bot [10]. A swarm-bot is defined as a self-organizing,
self assembling artifact composed of a swarm of s-bots—mobile robots with the
ability to connect to/disconnect from each other. S-bots are equipped with simple
sensors and motors and have limited computational capabilities. Their physical
links are used to self-assemble into a swarm-bot able to solve problems that
cannot be solved by a single s-bot.1

The SWARM-BOTS project takes inspiration from recent studies in swarm

intelligence, a novel approach to the design and implementation of “intelligent”
systems inspired by the effectiveness and robustness observed in social insects
and in other animal societies [3]. A key role in swarm intelligence is played by the

1 Details regarding the hardware and simulation of the swarm-bot are presented in [9]
and on the project web-site (http://www.swarm-bots.org).



phenomenon of self-organization, whereby global level order emerges in a sys-
tem from the interactions happening among the system’s lower-level components.
Moreover, these interactions are based only on local information, without refer-
ence to the global pattern [5]. A particular form of self-organization is observed
in some social insects, which connect one to the other creating complex physical
structures. This type of self-organization is referred to as self-assembling [1], and
is one of the key elements of the SWARM-BOTS project.

Our interest in aggregation stems from the fact that, in order to be able to
self-assemble, s-bots have to first aggregate in a common location. Additionally,
we are interested in self-organized aggregation, that is, aggregation processes
that are not driven by a central controller. Self-organization can lead to robust
control systems that can be executed without the need of global information,
but exploiting only local sensing and local interactions among s-bots.

We consider the problem of defining the control system for the s-bots using
artificial evolution, which has gained more and more attention for robotic tasks
in the last decade [8]. There are many motivations behind the use of evolutionary
techniques for the design of a control system for a robot. In particular, in a multi-
robot domain such as the one considered within the SWARM-BOTS project, the
dynamical interactions among robots and between robots and the environment
make it difficult to hand-design a control system. On the contrary, evolution can
fully exploit these dynamic features, without requiring much intervention from
the designer. In this paper, we show how evolution can find simple but effective
behaviors, which, in some cases, scale with the number of s-bots involved in the
experiment.

The paper is organized as follows: Section 2 presents some examples of ag-
gregation observed in biological systems, describing the basic mechanisms that
enable self-organized aggregation to emerge. Section 3 presents our experiments
on evolving aggregation behavior for the swarm-bot. The experimental setup is
described and the obtained results are analyzed. Finally, Section 4 concludes the
paper.

2 Aggregation in Biological Systems

Self-organized aggregation occurs in biological systems by means of two basic
mechanisms: positive and negative feedback. Positive feedback usually takes the
form of attraction toward a given signal source (e.g., chemical, tactile, visual).
This mechanism leads to amplifications of the source of information, which be-
comes more and more attractive in time. On the other hand, negative feedback
serves as a regulatory mechanism, providing some form of repulsion among the
system components, thus controlling the formation of the aggregate.

One of the best studied examples of self-organized aggregation is the one
observed in the cellular slime mold Dictyostelium discoideum [4,11]. When the
amoebae have enough food, they act independently, grow and reproduce rapidly.
However, when they are starving, they enter a developmental phase: the amoebae
emit a chemical attractor that diffuses in concentric waves and serves as a guide



for the aggregation. When the amoebae are clustered, they form a multicellular
organism called a slug, which is able to move on the substrate for some time.
Eventually, the slug turns into a fruiting body that can develop and distribute
spores in the environment, thus restarting the life cycle.

A similar aggregation process can be observed in many other unicellular
organisms [5]. Also social and pre-social insects present multiple forms of ag-
gregation, a particular example being the feeding clusters of larvae of the bark
beetle Dendroctonus micans [6]. In this case, larvae emit pheromone when feed-
ing. The pheromone diffuses in air and triggers the aggregation process. In fact,
in presence of a pheromone gradient, larvae react by moving in the direction of
higher concentration of pheromone, eventually forming a cluster.

Other interesting examples are given by honey bees, that cluster around the
queen on a branch, while scout bees search for new nesting sites. Also birds, fish
or mammals present aggregation phenomena that are self-organized, at least
to some extent: for example, young penguins aggregate for warmth, many fish
species create defensive or hunting schools, and some species of birds and mam-
mals protect their cubs at the center of the group [5].

The aggregation processes described above have been shown to be self-
organized. However, we know many other examples in which environmental in-
formation or other heterogeneities are used as a clustering stimulus, sometimes
mixing it with self-organized behaviors. For example, the environment can of-
fer cues for aggregation, like light or temperature for flies or humidity for sow
bugs [5]. However, as mentioned before, we will focus on self-organized aggrega-
tion, showing how it can emerge as a result of artificial evolution.

3 Evolving Aggregation Behaviors

As discussed in the previous section, aggregation can be the result of a self-
organizing process. After some experience in hand-coding pattern formation be-
haviors for a group of simulated s-bots placed in a grid world [10], we tried to
develop s-bots able to aggregate by using artificial evolution. In the following, we
describe the experimental setup used for the evolution of the clustering behavior.
Then, the obtained controllers are analyzed and their properties and limitations
are presented.

3.1 Experimental Setup

The experiments presented in this section are performed in simulation, using a
software based on the rigid body dynamics simulator SDK VortexTM. This sim-
ulator reproduces the dynamics, friction and collisions between physical bodies.
The s-bots are modeled as cylinders (radius r = 12 cm, height h = 6 cm) and are
provided with two motorized wheels, a gripper that allows connections between
s-bots, and an omni-directional speaker that continuously produces a tone that
can be perceived from a distance up to 50 cm (see Fig. 1a and 1b). Each s-bot



is also equipped with eight infrared proximity sensors, three directional micro-
phones, three sensors for detecting established connections on the body, and a
gripper sensor simulating a light barrier on the gripper, which is used to perceive
the presence of a grippable object (see Fig. 1c). The environment consists of a
square arena surrounded by walls. The size of the arena is chosen to be 2 × 2
meters and is bigger than the perceptual range of the s-bots to emphasize the
locality of sensing.

We used a generational evolutionary algorithm for the evolution of the s-

bot neural controller. The genotype specifies the connection weights of a simple
perceptron having 17 sensory neurons that encode the state of the 16 sensors
and a bias unit (i.e., a unit whose activation state is always 1.0). Each sensory
neuron is directly connected to 3 motor neurons, that control the gripper and the
speed of the two wheels. The transfer function of the motor neurons is a standard
logistic function. Each connection weight ranges in the interval [-10, +10] and is
represented in the genotype with 8 bits. Each genotype is mapped into a neural
network that is cloned in every s-bot involved in the experiment [2]. Five s-bots

compose the group and they are allowed to “live” for 10 “epochs” (each epoch
consists of 600 cycles and each cycle simulates 100 ms of real time). At the
beginning of each epoch the s-bots are placed in randomly selected positions and
orientations within the arena.

In each epoch e, the fitness of a given genotype is estimated averaging over
the last 100 cycles a measure fe(t) that describes the average distance of the
group from its center of mass:

fe(t) =
1

n

n
∑

i=1

(

1 −

di(t)

50

)

,

where n is the number of s-bots and di(t) is the distance of the ith s-bot from the
center of mass, limited to 50 cm as upper bound in order to have fitness values
in the interval [0, 1]. The final fitness is obtained by simply averaging the values
obtained in each epoch.

(a) (b) (c)

Fig. 1. The simplified s-bot model. (a) 3D model, where the cylindrical body is trans-
parent to visualize the wheels (b) Actuators: motorized wheels (two gray rectangles),
gripper (dotted rectangle), and omni-directional speaker (black circle). (c) Sensors:
proximity sensors (black rectangles), directional microphones (white circles), connec-
tion sensors (three regions marked with a dashed line around the body), and a light
barrier sensor on the gripper (dotted rectangle).



(a) (b)

Fig. 2. Snapshots of the formed aggregate. (a) Static clustering behavior. (b) Dynamic
clustering behavior.

The population contains 40 genotypes. The best 8 genotypes of each gener-
ation are allowed to reproduce, each generating 5 offspring. The per-bit (flip)
mutation rate is 2/L, where L is the length of the genotype. No recombination is
used. Parents are not copied to the offspring population. The evolutionary pro-
cess lasts 100 generations. The experiment was replicated 10 times by starting
with different randomly generated initial populations.

In all replications, good solutions are discovered quite early in the evolution,
and are then slowly refined afterward, the fitness always reaching values near to
the maximum. Figure 2 shows two snapshots taken at the end of the aggregation
process.2 In the following, we analyze the obtained results, classifying the evolved
behaviors in two different classes.

3.2 Behavioral Analysis

By running the evolutionary experiment, we observed the emergence of two types
of strategies: a static and a dynamic clustering behavior. The former creates
very compact and stable aggregates in which s-bots do not change their relative
positions (see Fig. 2a). The latter creates rather loose but moving aggregates
that, as we will discuss, allow scalability of the behavior (see Fig. 2b). In the
following, we analyze the most representative examples of both classes.

Static Clustering Behavior. As mentioned before, behaviors that fall into
the static clustering category create very compact clusters. When far from other
individuals, s-bots explore the arena moving backward along a circular trajectory
having a diameter bigger than the arena side and avoiding walls. When two s-

bots get close, the attraction to sound sources becomes predominant, and the
trajectories change: the two s-bots tend to bounce against each other, due to the
interplay between attraction and repulsion originating from sound and infrared
sensors respectively. In fact, clusters of two s-bots are very unstable. However,
during the time spent close to each other, the pair can attract other s-bots

2 See http://www.swarm-bots.org/index.php?main=3&sub=35&conpage=cl for some
movies of these behaviors.
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Fig. 3. Static clustering behavior: fitness evaluations obtained for different group sizes.
The average fitness is drawn as a thick line. Boxes represent the interquartile range
of the data, while the horizontal bars inside the boxes mark the median values. The
whiskers extends to the most extreme data points within 1.5 of the interquartile range
from the box. The empty circles mark the outliers.

which can join the cluster, increasing its size and stability. Finally, when the
aggregate is formed, s-bots continuously monitor the surrounding by performing
small moves or turning on the spot, in order to constantly adjust their position
with respect to the other s-bots.

Note that the performance of the neural controller with respect to the given
fitness measure is maximized by this strategy: s-bots are in contact when clus-
tered, thus minimizing the distance from the center of mass. Evolution has ex-
ploited one important invariant present in the experimental setup: the number
of s-bots. In fact, given that 5 s-bots are present in the environment, only clus-
ters formed by the majority (that is, 3 s-bots or more) are stable, while smaller
clusters (2 s-bots) easily disband. This suggests that when the group size is in-
creased, it will be difficult to obtain a single cluster, but rather multiple smaller
clusters will be formed.

In order to confirm this hypothesis, we analyzed the scalability of the clus-
tering behavior with respect to the number of s-bots involved. We repeated the
evaluation of the fitness 100 times for different group sizes3. The results plotted
in Fig. 3 show that, as expected, the behavior does not scale well with the num-
ber of robots. In particular, the best results are achieved with group sizes around
5, showing that the evolved behavior is particularly tuned for these situations.
Not surprisingly, the average fitness for a group of 2 s-bots is very low, as this
cluster is unstable. The group of 3 s-bots presents an high variance: this suggests
that s-bots were not able to form a stable cluster within the limited time, due
to the lower density of s-bots in the arena. For group size bigger than 5 the

3 Each fitness evaluation is performed over 1,000 cycles, since 600 cycles were not
sufficient for the clustering of larger groups.
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Fig. 4. Static clustering behavior: snapshots of the sound fields are shown at three
instants in time. Each row corresponds to a simulation of clustering with a different
group size (5, 10 and 20 s-bots, from top to bottom).

performance quickly decreases. This can be explained by the fact that, the more
the s-bots, the higher the number of small clusters. Additionally, a high density
of s-bots creates a high intensity of sound throughout the arena, causing all the
s-bots to whirl in place or to join a near neighbor.

The tone continuously emitted by each s-bot creates a sound field which can
be used to give an approximate indication of the sound attraction forces acting
on the s-bots. Figure 4 plots the change in the sound field over time for groups
of 5, 10 and 20 s-bots. In the group of five s-bots, a single cluster is formed,
while multiple clusters appear for larger group sizes. The high intensity of sound
inhibits the exploration behavior of the s-bots and makes them join the nearest
s-bot or cluster, as displayed in the last row of Fig. 4.

Dynamic Clustering Behavior. The dynamic clustering behavior creates
loose and moving clusters. Also in this case, a circular trajectory is observed
when an s-bot is far from the walls and from other s-bots. When the s-bots sense
each other, they aggregate and start moving together to explore the environment,
in a sort of “flocking” behavior, which is the result of the interplay of attraction
to sound and repulsion from too close s-bots. This creates moving clusters which
can search and merge with other s-bots or clusters. When close to each other,
s-bots continue to move and change their relative positions. In this way, small
clusters can change their shape and move across the arena, having the possibility
to join other clusters or attract free s-bots and increase the size of the aggregate.
This feature makes the dynamic clustering behavior robust with respect to the
formation of sub-clusters, since formed clusters can continue to explore the arena.

The scalability analysis, conducted in the same way as for the static clustering
behavior, confirms the robustness of the evolved behaviors. Figure 5 shows that
the performance of the group decreases almost linearly with the group size. This
decrease in performance is not due to an imperfect aggregation, but to the fact



2 4 6 8 10 12 14 16 18 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Robots

Fi
tn

es
s

Fig. 5. Dynamic clustering behavior: fitness evaluations obtained for different group
sizes. The average fitness is drawn as a thick line (see also Fig. 3 for explanation of the
graph).

that the minimum average distance to the center of the cluster grows with the
number of s-bots due to their physical embodiment. Thus, the evolved behavior
is well suited for every group size, as sub-clusters, when formed, can continue
the aggregation process.

Figure 6 shows the snapshots of sound fields observed for the dynamic clus-
tering behavior. It is worth noting that, unlike the observations made on static
clustering behavior, a high intensity of sound in the arena is not problematic for
the movement of the s-bots. On the contrary, it seems to serve as a communica-
tion medium that guides the clustering.

5 s−bots

20 s−bots

10 s−bots

cycle 250 cycle 500cycle 0

Fig. 6. Dynamic clustering behavior: snapshots of the sound fields are shown at three
instants in time. Each row corresponds to a simulation of clustering with a different
group size (5, 10 and 20 s-bots, from top to bottom).



4 Conclusions

In this paper, we have described the phenomenon of aggregation in biological
systems and the evolution of controllers for a group of simulated robots in order
to obtain a similar process. In our experiments, two behavioral strategies emerge
from evolution. The static clustering behavior results in high fitness values, but
it is tuned for a group of size 5. On the contrary, the dynamic clustering behavior
obtains lower fitness values as the formed clusters are less compact. However,
clusters move through the environment, leading to a scalable behavior.

The reader might have noted that, although s-bots can control their grippers,
these are not used. In the presented work, we were mainly interested in the
study of self-organized aggregation, and not in self-assembling, which requires
physical connections. Accordingly, the chosen fitness function does not encourage
the establishment of connections. Nevertheless, connections could have appeared
because, creating a connection, two s-bots minimize their relative distance. What
was observed, however, is that connected s-bots were, in most cases, unable to
move in a coordinated way, making the formation of clusters difficult if possible
at all.

In the literature, it is possible to find some interesting works related to the one
presented in this paper. Melhuish et al. [7] studied seeded aggregation and collec-
tive movement of minimal simulated agents, using sound signals (chorusing) to
regulate the group size. However, aggregation is not self-organized, because of the
presence of an infrared beacon that serves as aggregation site. Yokoi et al. [12],
taking inspiration from cellular slime molds, developed amoeba-like robots com-
posed of connected modules. Here, the main difference with the swarm-bot is
that, even if each module is autonomous in its control, it remains connected to
other modules, lacking the full mobility of s-bots.

In conclusion, the obtained results show that evolution is able to find simple
but effective solutions to the aggregation problem, mainly exploiting some invari-
ants present in the environment and the complex interactions among s-bots and
between s-bots and the environment. Under these conditions, effective behaviors
are difficult to hand-design, as they are an “emergent property of the interaction
between the robot and the environment” [8]. Furthermore, it is worth noting how
the evolved aggregation mechanisms resemble the ones described in Sect. 2. In
particular, the attraction to sound sources serves as a positive feedback mech-
anism: the higher the intensity of sound perceived, the higher the attraction
toward the source, which is consequently amplified. On the other hand, the re-
pulsion between s-bots constitutes the negative feedback mechanism: it makes
clusters of 2 s-bots unstable in the static clustering behavior, and results in the
movement of the clusters in the dynamic clustering behavior. The latter strategy
scales with the number of s-bots because it does not strongly rely on environ-
mental invariants, but is merely a result of the dynamic interaction between the
s-bots, which makes it more similar to the processes observed in nature.

Future work will exploit the presented results to obtain more complex forms
of cooperation, like aggregation around preys in order to collectively retrieve
them, or aggregation for coordinated motion on rough terrain.
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