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Abstract. In social insect colonies, many tasks are performed by higher-
order entities, such as groups and teams whose task solving capacities
transcend those of the individual participants. In this paper, we investi-
gate the emergence of such higher-order entities using a colony of up to 12
physical robots. We report on an experimental study in which the robots
engage in a range of different activities, including exploration, path for-
mation, recruitment, self-assembly and group transport. Once the robots
start interacting with each other and with their environment, they self-
organise into teams in which distinct roles are performed concurrently.
The system displays a dynamical hierarchy of teamwork, the cooperating
elements of which comprise higher-order entities. The study shows that
teamwork requires neither individual recognition nor inter-individual dif-
ferences, and as such might contribute to the ongoing debate on the role
of such characteristics for the division of labour in social insects.
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1 Introduction

The field of swarm intelligence draws inspiration from decentralised and self-
organising biological systems in general and from the collective behaviour of
social insects in particular [1, 2]. At present, little is known about the mecha-
nisms that regulate such biological systems, and in particular, about how such
mechanisms could enhance the design of swarm intelligence systems. Thus, it
is not surprising that the complexity exhibited in current implementations of
swarm intelligence systems does neither come close to the complexity of bio-
logical systems, nor does it come close to the complexity of systems men built
following the more traditional “top-down” approach.

In this paper, we investigate the conditions under which complexity can
“emerge” in swarm intelligence systems. One way of measuring complexity is
to look at the structural organisation of individuals when performing a task. In
an insect colony, various organisational levels can be observed. Both behaviours
at the individual level as well as at the colony level have been extensively stud-
ied [3]. “However, between these two extremes, numerous functional adaptive
units, or ‘parts’ exist” [4, page 291]. These intermediate-level parts comprise
groups and teams.



Teamwork is widely observed in vertebrates. Here, individual recognition is
believed to be an important factor [5]. Fewer examples of teamwork are known
in invertebrates. Oster and Wilson ([6]; reviewed in [7]) argue that members of
social insect colonies can not form teams as a consequence of their low grade
of discrimination: social insects can discriminate “nest mates from aliens, [and]
members of one caste as opposed to another” [6, page 151], however, “there is
very little evidence that social insects can recognise each other as individuals
(but see Tibbetts [8])” [7, page 6]. In contrast, in the recent literature [9, 3, 7],
biologists suggest that teams are indeed formed in social insects, and do not
require individual recognition. Another aspect that is subject of the ongoing
debate is whether inter-individual differences (e.g., members of different castes)
are fundamentally required in teamwork [3, 10, 11].

In the following, we investigate whether tasks that require a complex division
of labour fundamentally require individual recognition or inter-individual differ-
ences. We illustrate the methods and results of a series of experimental works in
which a set of “identical” robots is required to perform a complex, cooperative
task. At the beginning of a trial, the robots are randomly scattered in a bounded
arena that contains two objects—the prey and the (static) nest. The task is to
retrieve the prey to the nest. The following constraints are given:

– the prey requires concurrent, physical handling by multiple robots to be
moved,

– each robot’s perceptual range is small when compared to the distance be-
tween the nest and the prey; moreover, perception is unreliable,

– no robot has any (explicit) knowledge about the environment beyond its
perceptual range,

– communication among robots is unreliable and limited to a small set of
simple signals that are locally broadcast.

In the following we use the terms groups and teams as defined by Anderson
and Franks [11]. In particular, a group is a set of individuals that tackle a group
task; a team is a set of individuals that tackle a team task. A group task is a task
that “requires multiple individuals to perform the same activity concurrently”;
a team task is a task that “requires different subtasks to be performed concur-
rently” (page 535). Furthermore, a partitioned task is “a task that is split into
two or more subtasks that are organised sequentially (Jeanne [12]; reviewed in
Ratnieks and Anderson [13]; Anderson and Ratnieks [14])” [7, page 4]. Anderson
and Franks [11, 7], and Anderson and McMillan [15] found that the definition of
teamwork, developed primarily from studies of social insects, also applies more
generally to societies of other animals, including humans, and robots.

Fig. 1 (left) summarises the division of labour present in our robotic colony.
Overall, the robots accomplish a partitioned task comprising three subtasks that
are organised sequentially: (i) path formation requires robots to explore the envi-
ronment and form a path in between the nest and the prey that can be traversed
in both directions; (ii) recruitment requires some robots to maintain the path,
while other robots follow the path from the nest to the prey and then grasp
either the prey directly or other robots already gripped onto it; (iii) retrieval
requires some robots to decompose the path, while other robots transport the
prey along the path to the nest (until the prey, or a robot transporting it, is in
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Fig. 1. Left: illustration of the division of labour in our robotic colony that accomplishes
a group foraging task. The task is a partitioned task (see arcs). Individual tasks, group
tasks and team tasks are framed respectively by dotted, dashed and solid lines. Right:
side view of a colony member, the s-bot robot.

physical contact with the nest). Path formation itself is a group task, because
only a group of robots can establish a path. Similarly, path maintenance and
path decomposition are group tasks. Recruitment is a team task, because it re-
quires two different sub-tasks to be performed concurrently—path maintenance
and path following & grasp, where the latter is an individual task. Retrieval is a
team task as some robots have to engage in transport, while others, at the same
time, have to reside in the path to guide the transport robots towards the nest.
Transport can be considered a (nested) team task, as (i) multiple robots are
required to transport the prey, and as (ii) the transporting robots, when unable
to perceive the path, need to perform distinct actions to avoid that the group
transport is ineffective.

The remainder of this paper is organised as follows. In Section 2, we detail
the methods, that is, the robot’s hardware, the controller and the experimental
setup. In Section 3 we present the results. Finally, in Section 4, we discuss the
results and conclude the paper.

2 Methods

2.1 Hardware

We use a robotic system called swarm-bot lying at the intersection between col-
lective and reconfigurable robotics [16]. The system is composed of basic robotic
units, called s-bots, which are fully autonomous and mobile, and capable of con-
necting to each other. Fig. 1 (right) shows the physical implementation of the
s-bot. The robot has a total height of 19 cm and weighs approximately 700 g. An
s-bot can connect with another by grasping the connection ring with its gripper,
and it can receive connections on more than two thirds of its perimeter. The chas-
sis can be rotated in any horizontal direction. This allows s-bots, once assembled
into a physical entity, to move in a common direction. A 2-D traction sensor,
mounted between the s-bot ’s turret and the chassis, measures the mismatch be-
tween the direction in which the chassis is trying to move and the direction in
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Fig. 2. State diagram of the finite state machine that controls each s-bot. Circles rep-
resent states (i.e., behaviours). Edge labels specify conditions that trigger transitions
between the corresponding states. The initial state is search chain. Variable Pjoin

(and Pleave) is True with probability Pjoin (Pleave), and False otherwise.

which the connected group is trying to move. For the purpose of communica-
tion, the s-bot is equipped with an omni-directional camera, four microphones,
eight RGB LEDs, and two loudspeakers. For a comprehensive description of the
s-bot ’s hardware, see [16].

2.2 Controller

The controller consists of a collection of basic behaviours that are implemented
using either the motor schema paradigm, neural networks, or simple hand written
commands. A comprehensive description of the individual behaviours is available
in [17–20]. Following the behaviour-based approach [21] we could comfortably
merge all basic behaviours into a common framework, which is illustrated by a
state diagram in Fig. 2.

Fig. 3 shows a sequence of images taken from the experiment. The s-bots are
initially located at random positions. If an s-bot does neither perceive a (visually
connected) chain of s-bots nor the nest, it performs a random walk (state search
chain). An s-bot that finds a chain or the nest follows the perimeter of the
encountered structure (state explore chain). The nest can be considered as
the root of all chains. When the s-bot reaches the tail of a chain, it will join the
chain with probability Pjoin per time step (state join chain). S-bots that are
part of a chain do not leave it unless they are situated at the chain’s tail, in
which case they leave it with probability Pleave per time step. The process of
probabilistically joining/leaving a chain is at the basis of the exploration of the
environment as it allows the formation of new chains in unexplored areas.

If a chain member perceives the prey it does not leave the chain; thereby
the chain becomes stable. If the prey is still far, other s-bots can still join to
extend the chain in the direction of the prey; otherwise a path connecting the
nest to the prey has been formed that can be traversed in both directions. Once
a path is formed, it is maintained and in this way automatically recruits other



Fig. 3. Sequence of images taken for the trial with group size N = 12 s-bots and
distance D = 240 cm between the nest (blue cylindrical object) and the prey (red
cylindrical object). This trial last 15 minutes. For a detailed description, see Section 3.

s-bots to assemble to the prey (state assemble). S-bots that do not succeed self-
assembling within a hard-coded time period, move back to the nest to rest for
a while (state recovery). Once a sufficient number of s-bots has assembled to
the prey, the transport effectively starts; the s-bots pull the prey towards the
tail of the chain (state transport target). In the event that some s-bots can
not perceive the path, they use their force sensors to estimate the direction of
transport (state transport blind). When the prey reaches the tail of the chain,
the corresponding s-bot leaves the chain and moves back to the nest to rest for a
while (state recovery). In this way the transporting s-bots are guided from node
to node of the dissolving chain to eventually reach the nest. An s-bot leaving the
chain to rest at the nest emits a sound signal for a period of 30 s. Transporting
s-bots respond to this signal by temporarily suspending the transport. This gives
the chain s-bot sufficient time to move away.

2.3 Experimental Setup

The experiments take place in a bounded arena of size 500 cm × 300 cm. The
nest is positioned in the centre of the arena. The prey is put at distance D away
from the nest towards one of the four corners. N s-bots are positioned on a grid
composed of 60 points uniformly distributed in the arena. The initial position of
each s-bot is assigned randomly by uniformly sampling without replacement. An
s-bot ’s initial orientation is chosen randomly from a set of 12 possible directions.

We study a wide range of experimental setups, with group sizes N = 1, 2,
3, 4, 5, 6, 7, 8, 10 and 12, and distances (in cm) D = 60, 90, 120, 150, 180, 210
and 240. For each of these 70 setups we conduct a single trial.

The number of s-bots required to form a path connecting the prey with the
nest depends on the initial distance between the two objects. To calculate lower
bounds for the number of s-bots, we assume the s-bots to be organised in a single



Table 1. Left: number of s-bots required to accomplish sub-tasks path formation (Np),
recruitment (Nr) and retrieval (Nt) for different initial distances (D in cm) between the
nest and the prey. Right: overall level of success achieved for setups (N , D): no success
(0), sub-task path formation accomplished (1), sub-task recruitment accomplished (2),
and sub-task retrieval accomplished (3). Entries in parentheses denote setups that were
not tested as the number of s-bots N is clearly not sufficient to solve the task. Grey
levels of cells represent the best achievable level of success: white denotes no success,
light grey denotes success level 1, and dark grey denotes success level 3.

D 60 90 120 150 180 210 240
Np 1 2 3 4 6 7 8
Nr 3 4 5 6 8 9 10
Nt 3 4 5 6 8 9 10

D / N 1 2 3 4 5 6 7 8 10 12
60 1 1 3 3 3 3 3 3 3 3
90 0 1 1 3 3 3 3 3 3 3
120 0 0 1 1 3 3 2 3 3 3
150 0 0 0 1 1 1 3 2 3 3
180 (0) (0) 0 0 1 1 1 3 3 3
210 (0) (0) (0) 0 0 1 1 0 3 2
240 (0) (0) (0) (0) (0) 0 0 0 3 3

chain that is perfectly linear and directed towards the prey. Then, the lower
bound values are computed based on the programmed (and measured) distances
between adjacent s-bots (27 cm) and between the first chain member and the
nest (30.5 cm), as well as the programmed (and measured) maximum distance
of the last chain member from the prey (38.5 cm). For the accomplishment of
the overall task, two additional s-bots are required (at the same time) to engage
in transport. The lower bound values so computed are shown in Table 1 (left).

3 Results

Table 1 (right) gives an overview of the results. In 46 out of the 70 setups sub-
task path formation can in principle be accomplished (see light grey cells). In
44 out of the corresponding 46 trials the s-bots succeeded in forming a path.
For setups (N, D) = (5, 180) and (6, 210) a path was formed even though the
number of s-bots was thought to be insufficient. A path of five (six) s-bots has
a maximum predicted length of 177 cm (204 cm), which is 3 cm (6 cm) less than
the distance that needs to be covered, and therefore still within the range of
perceptual error of the s-bots’ cameras. In 33 out of the 46 setups, also sub-tasks
recruitment and retrieval can in principle be accomplished (see dark grey cells
in Table 1 (right)). In 29 out of these 33 setups, the s-bot group was able to do
so, thereby the entire task was completed.

Fig. 4 shows the state dynamics for two trials that are discussed below.

– (N, D) = (12, 150): all s-bots start in state search chain. Once the nest
has been found, they aggregate into chains. At t ≈ 80 s, a path to the prey
consisting of five chain members is established. Even though a path to the
prey is formed, other s-bots that find the nest self-organise into an additional
chain. The formation of the path is not explicitly communicated among the
s-bots of the group. However, as the s-bots in the newly formed chain leave
this chain with a constant positive probability, after some time only the
chain forming the path remains. At time t ≈ 130 s a first s-bot is recruited
and grasps the prey, joined by a second s-bot about 15 s later. While the



Fig. 4. State dynamics observed in trials for two setups (N, D). The respective grey lev-
els indicate the number of s-bots in states search chain, explore chain and recovery,
join chain, assemble, transport target and transport blind.

prey is transported towards the nest, the chain gradually dissolves. During
the transport, additional s-bots try to assemble with the pulling structure.
Two of them succeed, whereas others fail because the pulling structure is in
motion. By looking at the state diagram in Fig. 4 (left), one can see that
some of the s-bots engaged in transport are not capable of perceiving the
path (see white area). Thus, we have an example where the s-bots exhibit
a hierarchy of teamwork: the group of s-bots that cannot perceive the path
needs to interact with the group of s-bots that can perceive the path; thereby
these groups form a team. This team, which is composed of all transport s-
bots, can be considered a higher-order entity. It forms part of another team
which includes another higher-order entity—the group of s-bots maintaining
or decomposing the path. This nested structure is illustrated in Fig. 1 (left).

– (N, D) = (7, 150): at time t ≈ 30 s a path between nest and prey is already
established. At time t ≈ 90 s, two s-bots have been recruited and are assem-
bled with the prey. The five remaining s-bots are aggregated in the chain
forming the path. During the transport, chain members disaggregate once
in the immediate vicinity of the prey, and follow the path back to the nest
to rest. After some time, the very same s-bots resume activity, follow the
path, and eventually two of them assemble with the pulling structure and
participate in transport. This is an example of how the composition of teams
can adapt to changes in the workload of the underlying sub-tasks.

Fig. 3a–f show a sequence of images taken during the trial with group size N = 12
and distance D = 240 (in cm). During the path formation phase, two chains are
formed concurrently (b), and it takes several rearrangements of the chains until a
path is formed. This path consists of a chain of eight s-bots (c). Shortly thereafter,
two s-bots get recruited and assemble with the prey (d). During retrieval, most
of the s-bots of the pulling structure loose sight of the path, which is gradually
dissolving, and the prey is moved in the wrong direction (e). However, the path
gets re-established by a new s-bot extending the chain in the direction to the
prey. As a consequence, the transport resumes and can be completed (f). This is
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Fig. 5. Left: number of distinct behavioural roles an s-bot performed during a trial.
Data from all s-bots and all trials. Right: number of times an s-bot changed its be-
havioural role during a trial. Data from all s-bots and all trials.

an example of a situation in which teamwork among higher-order entities (such
as teams or groups) requires a participating entity to adapt its configuration to
unexpected environmental circumstances.

Fig. 5 (left) shows the number of distinct behavioural roles (i.e., states) in-
dividual s-bots performed during the experiment. In 75% of the cases, an s-bot
performed either four or five of the seven roles. This suggests that the s-bots are
indeed inter-changeable. Only in 4% of the cases, an s-bot performed less than
four behaviours during the trial. In 15.7% of the cases, an s-bot performed all
seven behaviours.

Fig. 5 (right) shows the number of times an s-bot changed its behavioural
role during the trials of our experiments. The most frequently observed number
of changes in behaviour belongs to the six to ten changes range. Note, however,
that both mean and median number of changes are higher than this range of
values (20.9 and 14.5, respectively).

4 Discussion

In this paper, we have presented an experimental study in which a colony of
autonomous robots has to solve a complex foraging task. The task requires a
range of sub-tasks to be performed including (i) exploration of the environment,
(ii) formation of a path between a prey and a nest, (iii) recruitment of nest mates
to the prey, (iv) self-assembly into pulling structures, and (v) group transport
of the prey back to the nest. Due to the limited abilities of the robots, the
accomplishment of the task requires the concurrent activity of at least i robots
(i ∈ {3, 4, 5, 6, 8, 9, 10}), where i depends on the experimental setting. Moreover,
the accomplishment of the task requires division of labour, in other words, the
robots need to perform different sub-tasks concurrently. Such constraints are
typically not considered in other studies of group foraging systems (e.g., [22–26,
20]), which often make use of some form of global perception or communication,
and which often do not require a complex division of labour. In general, we



believe that the investigated problem provides a framework that captures the
essence of a variety of problems that are addressed at the collective level in social
insect colonies.

Inspired by the behaviour of the natural counterparts, we developed a rel-
atively simple, decentralised control algorithm. Although most of our primitive
behaviours as well as the overall framework, a finite state machine, were man-
ually designed, we believe that similar types of rules can result from natural or
artificial evolutionary processes. In this respect, such systems could be adaptive
to changes in the environment.

A series of experimental results from systematic trials with up to twelve
physical robots confirm the efficacy of the system. In almost all of the trials where
the group size is sufficient to accomplish the overall task, the group succeeded
in retrieving the prey to the nest. Video recordings from the experiments are
available at http://iridia.ulb.ac.be/supp/IridiaSupp2008-008.

The colony displayed a self-organised and dynamically changing hierarchy
of teamwork in which collaboration took also place among high-order entities
including groups and teams. The higher-order entities (including the entire sys-
tem) proved surprisingly robust with respect to the inaccurate and sometimes
malfunctioning behaviour of their component modules—parts of a robot such
as the tracks, entire robots, and even groups of robots broke down or exhibited
unexpected behaviour.

We believe that these experiments are among the most sophisticated exam-
ples of self-organisation in robotics to date. The study confirms in a new way
that complex forms of division of labour can indeed result from the interac-
tions of individuals that follow relatively simple and local rules. The study also
demonstrates that teamwork requires neither individual recognition (the robots
we use are inter-changeable) nor inter-individual differences (the robots we use
are homogeneous in terms of “morphology” and “brain”), and as such might con-
tribute to the ongoing debate on the role of such characteristics for the division
of labour in social insects.
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