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ABSTRACT
When a mixture of particles with different attributes under-
goes vibration, a segregation pattern is often observed. For
example, in muesli cereal packs, the largest particles—the
Brazil nuts—tend to end up at the top. For this reason, the
phenomenon is known as the Brazil nut effect. In previous
research, an algorithm inspired by this effect was designed to
produce segregation patterns in swarms of simulated agents
that move on a horizontal plane.

In this paper, we adapt this algorithm for implementation
on robots with directional vision. We use the e-puck robot
as a platform to test our implementation. In a swarm of e-
pucks, different robots mimic disks of different sizes (larger
than their physical dimensions). The motion of every robot
is governed by a combination of three components: (i) at-
traction towards a point, which emulates the effect of a grav-
itational pull, (ii) random motion, which emulates the effect
of vibration, and (iii) repulsion from nearby robots, which
emulates the effect of collisions between disks. The algo-
rithm does not require robots to discriminate between other
robots; yet, it is capable of forming annular structures where
the robots in each annulus represent disks of identical size.

We report on a set of experiments performed with a group
of 20 physical e-pucks. The results obtained in 100 trials of
20 minutes each show that the percentage of incorrectly-
ordered pairs of disks from different groups decreases as the
size ratio of disks in different groups is increased. In our
experiments, this percentage was, on average, below 0.5% for
size ratios from 3.0 to 5.0. Moreover, for these size ratios, all
segregation errors observed were due to mechanical failures
that caused robots to stop moving.
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Figure 1: A segregation pattern in a swarm of
20 e-puck robots. The robots have organized into
a center-periphery pattern around a light bulb.
Robots with green and red top markers emulate
disks of radius 8 cm and 16 cm, respectively. Each
robot’s motion is governed by a combination of three
components: (i) attraction towards the light bulb,
(ii) random motion, and (iii) repulsion from nearby
robots.

Multi-robot systems, Segregation, Self-organization

1. INTRODUCTION
Segregation is a process whereby objects or individuals

separate into distinct groups. It can be observed on various
scales, ranging from the molecular to the macroscopic scale.

In this paper, we consider forms of segregation that are
driven by self-organized processes [6]. We focus on the prob-
lem of making a swarm of physical robots self-organize into
an annular structure. The robots are all identical in hard-
ware; yet, by executing different behaviors, they are able
to form a center-periphery pattern, as shown in Figure 1.
We restrict our study to segregation between two groups
of robots, mainly because of the limited number of physi-
cal robots available. However, the algorithm we use can, in
principle, form annular structures with an arbitrary number
of groups (and thus layers).

The formation of annular structures, and of center-peri-
phery patterns in particular, might be useful in a range of
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applications. Examples include reconfigurable nested mem-
brane structures in biomedical applications and dynamically
constructed defense structures in military applications.

A number of studies have looked at spatial segregation
using simulated robotic agents. For example, Şahin et al. [8]
implemented a control law based on a probabilistic frame-
work. Kumar et al. [13] implemented a control law based on
artificial potential functions. In these studies, segregation
is the result of “individual choices that discriminate” [18].
In contrast, our robots are anonymous, and thus unable to
discriminate between each other.

Other studies have looked at spatial segregation in the
context of macroscopic self-assembly [11]. Bowden et al. [5]
observed center-periphery structures when millimeter scale
objects of two different heights interacted with each other
by lateral capillary forces. Ngouabeu et al. [16] observed
segregation phenomena in a system of vibrating and non-
vibrating mechatronic modules that float on the surface of
water.

Segregation phenomena observed in ant colonies [10] have
inspired the implementation of control laws for robots that
organize two distinct groups of items into center-periphery
patterns [20, 14] (see also [1]). Unlike these works, our
robots segregate themselves and are unable to discriminate
between robots (or items) of different groups.

The Brazil nut effect [17] refers to the segregation that
occurs when shaking a mixture of granular material of dif-
ferent sizes. Barker and Grimson [3] explain it as follows:
“During the periods when shaking loosens the packing, in-
dividual small particles can move into voids beneath large
particles and so prevent them from returning to their pre-
vious positions. It is far less probable that several small
particles will move together so as to create a void that can
be occupied by a single large particle. The net effect is that
the smaller particles occupy the lower positions during the
active part of the shaking process and then become trapped
there when the grains fix into a new arrangement”.

In previous research, a segregation algorithm based on the
Brazil nut effect was developed and tested in computer sim-
ulation [12]. This algorithm assumed that every robot can
instantly measure the relative position of all the robots in its
vicinity. Here, we show how this algorithm can be modified
to allow for an implementation using directional vision. This
implies that (i) robots have to revolve in order to obtain an
omni-directional picture and (ii) the algorithm has to cope
with misperceptions, for example, due to visual occlusion
(see Figure 5). We report on a series of experiments using
the modified algorithm that show near error-free segregation
in a swarm of 20 physical robots.

2. METHODS

2.1 e-puck Robot
We use a mobile robot called e-puck (see Figure 2), which

was developed for educational and research purposes [15]. It
has a circular body of approximately 7.5 cm diameter, and
weighs approximately 150 g. The e-puck is a differential-
wheeled robot, having an inter-wheel distance of 5.1 cm.

In order to facilitate visual detection of robots by each
other, we fitted every e-puck with a black paper skirt. More-
over, in order to allow for tracking of different groups of
robots using an overhead camera system, we fitted the e-
pucks with color-coded top markers. Figure 2(a) shows an
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Figure 2: The e-puck robot. (a) An e-puck fitted
with a black skirt and a green top marker. (b)
Top-view schematic of an e-puck, indicating the lo-
cations of its wheels, camera [including the field of
view (FOV)] and infrared sensors.

e-puck fitted with a skirt and a green marker.
The e-puck has an RGB color camera located at its front.

The camera has a resolution of 640 × 480 pixels (width ×
height), but the image taken was subsampled to 40 × 15
pixels. The e-puck also has eight infrared (IR) sensors, which
are distributed around its body. Here, they are used in a
passive mode, in order to detect the angular position of a
light bulb within the arena. Figure 2(b) shows a top view
of an e-puck, indicating the locations of the wheels, camera
and IR sensors.

The robot has an IR receiver which allows IR signals to be
sent to it, for example using an IR remote control. Here, we
make use of this receiver in order to issue a starting signal
to all of the robots at the beginning of every trial.

2.2 Controller
The controller used here is based on the one presented

in [12]. Some modifications had to be made in order to port
the algorithm onto physical e-puck robots. In the follow-
ing, we describe the algorithm used here and highlight the
modifications made.

The robots emulate a mixture of differently-sized disks
subjected to vibration on a 2-dimensional plane. In partic-
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Figure 3: The three behavioral components of robot
i. Vector ~vi,taxis points towards the estimated loca-
tion of the infrared radiation source. Vector ~vi,rand

points in a random direction. Vector ~vij,repul is due
to the repulsion effect on robot i by robot j. Robot i
is repelled by robot j if it perceives the virtual body
of robot j as intersecting with its own virtual body.
As robot i has no means of measuring the virtual
radius of robot j (rj), it assumes that rj = ri.

ular, robot i emulates a disk of radius ri, whose motion is
governed by a combination of three components (see Fig-
ure 3):

1. ~vi,taxis: attraction towards a point common to all the
disks, which emulates the effect of a gravitational pull,

2. ~vi,rand: random motion, which emulates the effect of
vibration and

3. ~vi,repul: repulsion from nearby disks, which emulates
the effect of collisions.

Hereafter, the disk a robot represents is also referred to
as the virtual body of the robot. The radius of the disk is
also referred to as the virtual radius of the robot.

The behavior is implemented using the motor schema para-
digm [2]. In every control cycle, robot i calculates the afore-
mentioned three vectors. These are then combined as fol-
lows:

~vi = ~vi,taxis + crand~vi,rand + f(~vi,repul). (1)

Vector ~vi,taxis is always a unit vector. Vector ~vi,rand is
also a unit vector but a parameter crand is used to weight
its magnitude. Vector ~vi,repul can have a large magnitude
because it is computed as a sum of possibly many vectors
(for details, see Section 2.2.3); therefore, its magnitude is
capped by function f (·). Here, we use crand = 0.6 and a
maximum allowed magnitude of 6.4 units for ~vi,repul. These
settings follow suggestions from simulation results1 [12].

1The algorithm in [12] uses an additional parameter to

After constructing motion vector ~vi, robot i first turns to
point in its direction, and then moves forward for a fixed
duration. The speed at which it moves forward is propor-
tional to the magnitude of the vector, so that the maximum
magnitude possible (i.e., 1+0.6+6.4 = 8 units) corresponds
to the maximum speed of the robot (12.8 cm/s).

The length of the control cycle used here is 5 s, which is
substantially longer than that used in simulation (0.1 s). The
main reason for this is that the e-puck robots are equipped
with directional cameras, whereas the simulated robots had
omni-directional perception [12]. In each cycle, the robot
spends around 2.4 s in revolving to obtain an omni-directional
image, 1.3 s in turning to point in the direction of ~vi, and
1.3 s in moving forward.

In the following, we detail how vectors ~vi,taxis, ~vi,rand and
~vi,repul are computed.

2.2.1 Attraction to Center of Gravity
The algorithm requires a point of attraction in the envi-

ronment to emulate the effect of a gravitational pull. Each
robot is required to estimate the angular position of this
point (the distance to it is not needed).

In our experimental setup, we use an infrared radiation
source—a light bulb—as the point of attraction. In order
to estimate its angular position, each robot makes use of
its eight infrared sensors. In every control cycle, the three
sensors giving the highest readings are selected. Each read-
ing is then represented as a vector pointing from the center
of the robot to the physical location of the sensor, with a
magnitude proportional to the sensor’s reading. The three
vectors are summed, and the resulting vector is normalized
to have a unit magnitude, giving ~vi,taxis.

2.2.2 Random Motion
The random motion vector ~vi,rand is taken to be a unit

vector pointing in a random direction in the interval (0, 2π].
This direction is taken with respect to the robot’s orientation
at the beginning of the control cycle.

2.2.3 Repulsion
In principle, each robot should be repelled by every other

robot whose virtual body overlaps with its own virtual body.
This would require the robots to know the virtual radii of
nearby robots. However, as shown in [12], segregation can
still be effectively achieved if every robot assumes for all
other robots a constant virtual radius, which is a parameter
that needs to be fixed a priori. Here, we propose and use an
alternative, parameter-free heuristic: robot i assumes that
the virtual radius of all other robots is equal to its own, that
is, ri.

In our implementation each robot uses its camera to esti-
mate the angular position of and distance to nearby robots.
In every control cycle, a robot turns through one revolution
in eight steps of 45◦ each. In each step, its camera takes a
picture. From the center of this picture, a horizontal line
of 32 pixels is extracted (corresponding to a field of view
of 45◦). The pixel lines extracted from the eight images
are concatenated to give a panoramic view of the scene (see
Figure 4). The concatenated image is traversed horizontally

weight ~vi,repul. This is not used here because the repulsion
mechanism has been modified. The weightings used here are
identical to [12] when one considers the maximum allowed
magnitude of ~vi,repul.
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Figure 4: Image processing. (a) Overview of a scene
with seven robots. (b) The corresponding concate-
nated image (here, with the original 15 pixel height)
formed by the green robot as it takes eight images in
one revolution. Note how the green robot sees the
red robots 4, 5 and 6 as a single object that appears
closer (see also Figure 5).

to scan for nearby robots. This is achieved by identifying
blocks of dark pixels. Each block represents a perceived
robot j. The angular position of that robot is estimated
from the position of the block. Vector ~vij,repul points in the
direction away from robot j. The distance to the robot,
dij , is estimated from the width of the block. The amount
of repulsion from a perceived robot j is proportional to the
perceived amount of intersection. Formally,

||~vij,repul|| =
{
k (2ri − dij) dij < 2ri;

0 dij ≥ 2ri,
(2)

where k = 0.2.
The total repulsion on robot i, ~vi,repul, is giving by sum-

ming the individual repulsion vectors for all blocks.
The vision based implementation differs from [12] in that

two types of misperceptions can occur: (i) it is possible for
several robots to be perceived as a single block of pixels [see
Figure 5(a)]; (ii) it is possible for a robot to occlude one or
more robots completely [see Figure 5(b)]. In order to com-
pensate for these misperceptions, our repulsion mechanism
places more emphasis on robots that are perceived to be
close [see Equation (2)]. This is in contrast with the mecha-
nism used in simulation [12], where the amount of repulsion
is constant regardless of the distance to a perceived robot.

2.3 Experimental Setup
We use n to denote the number of robots in the swarm.

Furthermore, we use m to denote the number of groups,
and nk to denote the number of robots in group k, k ∈
{1, 2, . . . ,m}. The robots in group k all have virtual radius

r(k). Recall that ri denotes the virtual radius of robot i.
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Figure 5: Possible misperceptions. (a) Robot i sees
three overlapping robots as a single object, j. It
incorrectly perceives a single robot at distance dij.
(b) Robot i can not see the two robots occluded by
robot j.

Thus, ri = r(k), if robot i is in group k.
We consider a system with n = 20 robots and with m = 2

different groups. The virtual radius of robots from group k
is chosen as follows:

r(k) = abk−1, (3)

where a is the size (in cm) of the smallest disk and b is the
minimum size ratio between disks of different groups. We
use a = 8 cm and b ∈ {1, 2, 3, 4, 5}.

Ideally, we expect the robots to organize into an annular
structure, where the disks of radius r(k), k ∈ {1, 2, . . . ,m},
are fully contained within the area of the annulus formed by
the concentric circles of radii (k − 1)g and kg in the center
of the environment. Parameter g represents the “thickness”
of the annulus and can be controlled by group size n [12].

An approximation of the ideal pattern can be obtained by
choosing nk as follows [12]:

nk =

2k−1

(r(k))2

m∑
j=1

2j−1

(r(j))2

n. (4)
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Table 1: Overview of configurations studied.

radius factor b n1 r(1) n2 r(2)

1.0 5 8.0 cm 15 8.0 cm

2.0 11 8.0 cm 9 16.0 cm

3.0 15 8.0 cm 5 24.0 cm

4.0 17 8.0 cm 3 32.0 cm

5.0 18 8.0 cm 2 40.0 cm

In our physical implementation, the robots moved in a
square arena of sides 2.5 m. A light bulb was placed over the
center of the arena, acting as the infrared radiation source,
that is, the point of attraction.

The initial placement of the robots was done as follows: a
square grid of 6 × 6 points was marked on the arena floor,
centered around the light bulb, with all points being 20 cm
apart. For each trial, 20 points were chosen randomly with-
out replacement. Additionally, for each robot, the orienta-
tion was selected randomly from four possibilities: north,
south, east and west.

Each trial was recorded from start to finish with an over-
head camera system.

2.4 Performance Metric
To measure the quality of segregation, we calculate the

segregation error (SE) as defined in [12]. Consider two
robots i and j and let xi and xj denote their positions. Fur-
thermore, let o denote the position of the ‘center of gravity’
in the same co-ordinate system, that is, the point to which
all robots are attracted.

The pair of robots (i, j) contributes to the segregation
error if one of the robots has a larger virtual radius and is
closer to o than the other one. It does not contribute to the
segregation error if either the robots have identical virtual
radii, or if the robot with a smaller virtual radius is closer
to o than the other one. Formally,

eij =





1 (ri < rj) ∧ (‖xi − o‖ ≥ ‖xj − o‖) ;

1 (ri > rj) ∧ (‖xi − o‖ ≤ ‖xj − o‖) ;

0 otherwise.

The segregation error is given by summing eij over all
pairs of robots, and normalizing by (only) the number of
errors possible. Formally,

SE =

∑n
i=1

∑n
j=1 eij

n2 −∑m
k=1 n

2
k

, (5)

where SE ∈ [0, 1]. Randomly placed robots will have a seg-
regation error of 0.5 on average. An error of 1.0 is achieved
if the robots are in an ‘inverse Brazil nut’ configuration, that
is, if for all (i, j) s.t. ri < rj , ‖xi − o‖ ≥ ‖xj − o‖.

3. RESULTS
We considered m = 2 groups of robots. Robots of the

first group represented disks of radius r1 = 8 cm, whereas
robots of the second group represented disks of radius r2 =
8b cm, b ∈ {1, 2, 3, 4, 5}. As reported in [19], the size ratio
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Figure 7: Box-and-whisker plot showing the segre-
gation error observed in experimental trials with 20
e-puck robots for different radius factors (20 trials
per radius factor). Each box comprises of observa-
tions ranging from the first to the third quartile.
The median is indicated by a horizontal bar within
the box. The whiskers extend to the farthest data
points that are within 1.5 times the inter-quartile
range. Outliers are indicated as circles.

b is a critical variable—increasing it results in a decrease in
the segregation error.

For each value of b, we performed 20 trials with n = 20
robots each, that is, we ran 100 experimental trials in total.
Every trial lasted for 20 minutes. Table 1 shows the number
of robots in each group [see Equation (4)].

Figure 6 shows a sequence of snapshots taken during three
typical trials with radius factor b = 1, 2 and 4.

3.1 Influence of Size Ratio on
Segregation Error

Figure 7 shows a box-and-whisker plot [4] of the segrega-
tion errors for the different radius factors (b).

For b = 1, all e-pucks represented disks of identical size.
Consequently, the segregation error (47.3%) was, on average,
similar to the expected error for purely randomly distributed
e-puck robots (50%). In no trial was perfect segregation
observed.

For b > 1, the median segregation errors are all 0. The
mean segregation errors are 1.31%, 0.07%, 0.49% and 0.28%
for b ∈ {2, 3, 4, 5}, respectively. For b = 2, error free segre-
gation was observed in 14 out of 20 trials. For b ∈ {3, 4, 5},
error free segregation was observed in 19, 18 and 19 of the
20 trials, respectively. That is, in these trials, all 20 e-pucks
were spatially distributed as intended.

In 4 out of 60 trials for b ∈ {3, 4, 5} the segregation was not
error free. This was due to mechanical failures that caused
robots to stop moving. For example, a robot became stuck
on the arena floor, or lost contact with its battery.
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(a0) (a1) (a2) (a3)

(b0) (b1) (b2) (b3)

(c0) (c1) (c2) (c3)

Figure 6: Sequences of snapshots taken during trials with radius factor b equal to 1 (top), 2 (center) and 4
(bottom). Robots with green markers represent disks of 8 cm radius. Robots with red markers represent
disks of radius 8 cm (top), 16 cm (center) and 32 cm (bottom). The first and last images in each sequence
(from left to right) show the initial and final configurations after 0 and 1200 s. The other two images show
intermediate situations.

3.2 Influence of Size Ratio on
Spatial Distribution

To understand better the effect of the size ratio (b), we
analyzed the spatial distribution of robots of both groups.
Figure 8 shows the distances of all robots from the center
of the arena as observed at the end of the trial. The data
is grouped according to the two groups of robots presenting
disks of different sizes in addition to the radius factor used.

For b = 1, robots of both groups were similarly distributed
in space. The mean distances from the center of ‘smaller’
robots (green marker) and ‘larger’ robots (red markers) were
16.9 cm and 17.5 cm, respectively.

As b increased, the distance between robots of different
groups increased.

For robots representing small disks (of 8 cm radius), the
mean distance from the center of the arena mainly depends
on the number of disks of that size. The largest number of
small disks was present for b = 1 (in this case, all 20 robots
were identical). For b ∈ {2, 3, 4, 5}, the numbers were 11,
15, 17, and 18, respectively (see Table 1).

The mean distance of ‘larger’ robots from the center grew
almost linearly with the radius factor, setting them spatially
apart from the other group. This caused the segregation

error to decrease.

3.3 Segregation Dynamics
Figure 9 shows the segregation error over time as observed

in trials with radius factor b = 4. Initially, the segregation
error rapidly decreased until it became zero after 3.5 mins in
most of the trials.

4. CONCLUSIONS
In this paper, we studied spatial segregation in a swarm of

physical robots. We described how to port an algorithm in-
spired by the Brazil nut effect from computer simulations [12]
to the miniature mobile robot e-puck. The algorithm lets e-
pucks mimic a mixture of disks under vibration.

We presented a series of experiments with 20 e-puck robots
that confirm the efficacy of the algorithm. The e-pucks were
programmed to simulate a system of two groups of disks.
The desired target pattern was an annular structure around
a common point of attraction, where the robots in each an-
nulus represent disks of identical size. The percentage of
incorrectly-ordered pairs of disks from different groups de-
creased as the size ratio of disks in different groups was in-
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Figure 8: Box-and-whisker plot showing the dis-
tances of all robots from the center of the arena
for groups of different radius factor (400 data points
per radius factor). Green (light gray) boxes rep-
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Figure 9: Segregation error over time for 15 experi-
mental trials with 20 e-puck robots and radius factor
b = 4.0. Data from the remaining five trials are not
included because of some missing frames in the cor-
responding video recordings.

creased.2 This percentage was, on average, below 0.5% for
size ratios from 3.0 to 5.0. Moreover, for these size ratios, all
segregation errors observed were due to mechanical failures
that caused robots to stop moving. To the best of our knowl-
edge, this is the first example of segregation in a swarm of
physical robots with such a high level of accuracy.

The original algorithm in [12] assumed that every robot
can instantly measure the relative position of all the robots
in its vicinity. Here, we showed how this algorithm can be
modified to allow for an implementation using directional
vision. This implies that (i) robots have to revolve in order
to obtain an omni-directional picture and (ii) the algorithm
has to cope with misperceptions, for example, due to visual
occlusion. We believe that the new algorithm is applicable
to a wider range of robotic platforms when compared to the
original algorithm. In principle, the new algorithm can be
implemented on any wheeled robot with a camera or equiva-
lent sensor to detect nearby robots. Note that the robot also
needs to sense the angular position of a point of attraction
in the environment (to emulate the effect of a gravitational
pull). Here, we used a light bulb, which was perceived by the
e-puck’s infrared sensors. In principle, the light bulb could
be perceived as well using the directional camera while the
e-puck revolves to obtain the omni-directional picture.

The algorithm does not require the robots to communi-
cate, nor does it require them to discriminate between each
other. Therefore, the performance of the algorithm could
possibly scale well with both the number of robots and the
number of groups. Simulation results [12] support this claim;
in these, the segregation error decreased exponentially with
the size ratio and error free segregation was reported for 150
agents of three distinct groups.

In principle, the algorithm could form annular structures
with an arbitrary number of nested layers as well as struc-
tures in three dimensions [9]. A present limitation, however,
is that the robots’ minimum sensing range could be required
to increase exponentially with the number of layers.
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