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Abstract

We show that the Likelihood Ratio (LR) statistic for testing the value of the coef-

ficient β in a linear instrumental variables model with a single endogenous variable

is identical to the t0(β̂L)2 statistic as proposed by Mills, Moreira, and Vilela (2014),

where β̂L is the LIML estimator. This implies the equivalence of their conditional

versions that are robust to weak instruments. From this result, properties of the

power of the Conditional LR (CLR) test can be understood; in particular the asym-

metric nature of the power curve as a function of the true value of β when testing

H0: β = β0 for fixed β0, when the instruments are weak and the variance matrix

of the structural and first-stage errors is held constant. Power curves of the CLR

and related tests have often been presented for a design where instead the variance

matrix of the reduced-form and first-stage errors has been held constant. This latter

design changes the endogeneity features at each value of β and results in a power

curve that is close to the points with maximum power in the design with fixed vari-

ance of the structural and first-stage errors. As the results for the design with fixed

variance of the structural and first-stage errors are informative for the behaviour of

the test-based confidence intervals, it seems more natural to consider this design.

We find that LIML- and Fuller-based conditional Wald and conditional t0(β̂Full)
2

tests, which are not unbiased tests, are more powerful than the CLR test when the

degree of endogeneity is low to moderate.
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1 Introduction

For the linear instrumental variables (IV) model with one endogenous explanatory vari-

able, yi = xiβ + ui, the conditional Likelihood Ratio (CLR) test of Moreira (2003) and

related tests, like the AR (Anderson and Rubin, 1949), LM , and conditional Wald (CW )

tests are tests for the hypothesis H0: β = β0. They are robust to weak instruments in the

sense that they have correct size when instruments are weak, with CLR, AR, and LM

unbiased, similar tests, whereas the CW tests are not unbiased.

For the evaluation of the power of these tests, two different designs have been used in

the literature. Let the first-stage model be given by xi = z′iπ+ vi. Then one design keeps

the variance of the structural and first-stage errors,

Σ = V ar
(
(ui vi)

′) =

[
σ2
u σuv

σuv σ2
v

]
,

fixed when varying the value of β, whereas the other design keeps the variance of the

reduced form errors, Ω = V ar
(
(vyi vi)

′), fixed, where the reduced form for yi is given by

yi = z′iπβ + ui + βvi = z′iπy + vyi. The simulations in Kleibergen (2002), Moreira (2003,

2009), and Stock, Wright, and Yogo (2002), amongst others, are based on the fixed Σ

design, whereas Andrews, Moreira, and Stock (2006, 2007), Mills, Moreira, and Vilela

(2014) and Moreira and Moreira (2019) are examples of simulations based on the fixed Ω

design.

Poskitt and Skeels (2008) discuss these two designs and show that simulation results

can differ substantially between them, but do not provide an explanation for these dif-

ferences. Davidson and MacKinnon (2008) highlight that a design with Ω fixed changes

Σ when changing the value of β and conclude that Ω is “not a sensible quantity to keep

fixed” (Davidson and MacKinnon 2008, p 455). Andrews, Marmer, and Yu (2019) make

the same observation and propose a design where the value of β is fixed, but the value

of β0 in H0: β = β0 is varied instead. Their motivation for this design is its direct link to

the formation of confidence intervals based on inverting test statistics. The main focus

of the analysis in Andrews et al. (2019) is on the probability of obtaining infinite length

confidence intervals, and on the difference of the CLR power curve from the two-sided

power envelope for extreme values of β0. However, this design where β is kept fixed

but β0 is varied is essentially the same as the fixed Σ design, with the test statistics for
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H0: β = β0 when β = β∗ in the fixed Σ design then identical to the test statistics for

H0: β = −β∗ when β = −β0 in the Andrews et al. (2019) design when varying the value

for β∗. Therefore, the power functions of the design with β fixed and varying β0 are the

mirror images around 0 of those of the fixed Σ design.

In this paper, we make the following contributions. We directly compare and explain

the behaviour of the power curves of the CLR test in the two designs. We are better

able to explain the behaviour of the CLR test in the fixed Σ design by first showing, in

Proposition 1 in Section 2, that the LR statistic is the same as the t0(β̂L)2 ≡ W0(β̂L)

statistic proposed by Mills et al. (2014), where β̂L is the LIML estimator of β. The only

difference between W0(β̂L) and the standard LIML-based Wald test is the estimator for

σ2
u in the denominator of the test. For W0(β̂L) this variance is estimated under the null

and denoted σ̂2
0. Under weak instruments, the power of the CLR test is then boosted by

low values of σ̂2
0 and can reach one even with very weak instruments when ρuv = σuv/σuσv

approaches 1 or −1, and for certain values of β, such that σ̂2
0 → 0. We can thus explain

the asymmetry of the power of the CLR test under weak instruments, as documented

before by e.g. Stock et al. (2002) and Davidson and MacKinnon (2008).

The fixed Σ design keeps the structural endogeneity features constant, in particular the

degree of endogeneity ρuv. As mentioned above, this is not the case for the fixed Ω design,

where σ2
v is kept fixed, but both σ2

u (β) and σuv (β) are changing with the true value of β

in the DGP in a very specific way, as shown in Figure 1 in Section 3. In particular, the

correlation ρuv (β) approaches 1 for large negative values of β, and approaches −1 for large

positive values of β. We therefore compare the fixed Ω power curve with various fixed

Σ (β∗) power curves for different values of β∗, and where σ2
u = σ2

u (β∗) and σuv = σuv (β∗),

matching the values to those of the fixed Ω design at β∗. We find that, in weak instruments

setups, the power curve for the fixed Ω design crosses the various paths of the fixed Σ (β∗)

designs at points close to maximum power, as displayed in Figure 3 in Section 3. The

fixed Ω design therefore exploits the asymmetry of the power curve of the CLR test in

the fixed Σ design. This explains why, for a large part of the parameter space for β, the

fixed Ω design shows much higher power of the CLR test than the fixed Σ design under

weak instruments.

As a final contribution, we compare the behaviours of the LIML- and Fuller-based CW

tests and the Fuller-CW0 test to that of the CLR test in the fixed Σ design for different
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degrees of endogeneity ρuv. As far as we are aware these tests have only been compared

in the fixed Ω design, see Andrews et al. (2007) and Mills et al. (2014). We find that for

low to moderate degrees of endogeneity, these conditional tests are more powerful than

the CLR test. Even for medium to high values of ρuv the Fuller-CW0 test is well behaved,

with higher power than the CLR test for part of the parameter space.

As a final remark, it is sometimes argued to keep Ω fixed as it is known, i.e. can

be estimated consistently, unlike Σ under weak instruments, see e.g. the discussion in

Andrews et al. (2019). In all our simulations we follow the asymptotic design of Andrews

et al. (2006) with Ω known, also for the fixed Σ design, where Ω(β) is known but changes

with the value of β. Given the link of the fixed Σ power curve with the behaviour of the

test-statistics-based confidence intervals, it seems more natural to consider this design.

2 Model and Tests

The linear IV model specification for a sample {yi, xi, z′i}
n
i=1 is given by

yi = xiβ + ui (1)

xi = z′iπ + vi,

where zi is the kz vector of instrumental variables. The instruments satisfy E (ziui) = 0.

Standard assumptions on the data, see e.g. Assumption M in Stock and Yogo (2005),

needed for limiting normal distributions and consistent estimation of variance matrices

are assumed to hold. The explanatory variable xi is endogenous as E (xiui) = E (uivi) 6= 0.

Other exogenous explanatory variables, including the constant, have been partialled out.

The errors are assumed to be conditionally homoskedastic, with

V ar
(
(ui vi)

′ |zi
)

=

[
σ2
u σuv

σuv σ2
v

]
≡ Σ, (2)

and correlation ρuv = σuv/σuσv.

The reduced form for yi is given by

yi = z′iπβ + ui + viβ (3)

= z′iπy + vyi,
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and the reduced form error variance of (vyi vi)
′ is given by

Ω (β) =

[
σ2
u + 2βσuv + β2σ2

v σuv + βσ2
v

σuv + βσ2
v σ2

v

]
. (4)

Let b = (1 −β)′, and a = (β 1)′, then it follows that b′Ω (β) b = σ2
u = |Ω (β)| a′ (Ω (β))−1 a,

and |Ω (β)| = σ2
uσ

2
v (1− ρ2

uv).

Let y and x be the n-vectors (yi) and (xi) and Z the n × kz matrix of instruments.

The standard 2SLS estimator for β is given by

β̂2sls =
x′PZy

x′PZx
,

where PZ = Z (Z ′Z)−1 Z ′. The 2SLS estimator is based on the OLS estimator for π, given

by π̂ = (Z ′Z)−1 Z ′x. Let x̂ = Zπ̂, then β̂2sls = x̂′y/ (x̂′x) = x̂′y/ (x̂′x̂).

Dropping notationally the dependence of Ω on β for ease of exposition, an estimator

for

Ω =

[
ω11 ω12

ω12 ω22

]

is Ω̂ = W ′MZW/n, where W = [y x] and MZ = In − PZ . The LIML estimator for β is

then given by

β̂L =
x′PZy − nκ̂ω̂12

x′PZx− nκ̂ω̂22

,

where κ̂ is the minimum eigenvalue,

κ̂ = min eval
((
n−1W ′PZW

)
Ω̂−1

)
.

Let aL = (β̂L 1)′. The definition of the LIML estimator for π as used in Moreira (2003)

is given by

π̂L = (Z ′Z)
−1
Z ′W Ω̂−1aL

(
a′LΩ̂−1aL

)−1

. (5)

Alternative expressions for π̂L are,

π̂L = (Z ′MûLZ)
−1
Z ′MûLx (6)

= π̂ −
(Z ′Z)−1 Z ′ûL

(
ω̂12 − β̂Lω̂22

)
σ̂2
L

, (7)
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where ûL = y − xβ̂L and σ̂2
L = û′LMZ ûL/n = b′LΩ̂bL, with bL = (1 − β̂L)′. Expression (6)

is the standard expression as given in e.g. Bowden and Turkington (1984, p 108), from

which (7) can be derived, see also Hausman (1983, p 424).

Let x̂L = Zπ̂L, then β̂L = x̂′Ly/ (x̂′Lx) = x̂′Ly/ (x̂′Lx̂L), see Windmeijer (2018) for

the latter equality. It follows that the score for the LIML estimator of β is given by

x̂′L

(
y − xβ̂L

)
= 0.

Consider testing the null H0: β = β0 against the two-sided alternative H1: β 6= β0.

The distributional properties of the AR, LM , and LR tests as described below are exact

under fixed instruments, known Ω and normally distributed errors. Instrument strength

is then determined by λ = π′Z ′Zπ/σ2
v . The limiting distributions of the tests are the

same when relaxing these assumptions and using Ω̂ as an estimator for Ω, see Moreira

(2003) and Kleibergen (2002). Weak instrument asymptotics then imply π = πn =

c/
√
n, where c is a vector of constants, with instrument strength then determined by

λ = plim (π′nZ
′Zπn/σ

2
v) = c′Qzzc/σ

2
v , where Qzz = plim (Z ′Z/n).

Let u0 = y − xβ0. The Anderson-Rubin test statistic is given by

AR =
u′0PZu0

σ̂2
0

,

where σ̂2
0 = b′0Ω̂b0 = u′0MZu0/n, with b0 = (1 − β0)′. AR has a limiting χ2

kz
distribu-

tion under the null, independent of the strength of the instruments. AR is a test for

overidentifying restrictions in model (1), imposing the null.

Let π̂L0 be the LIML estimator of π under the null, given by

π̂L0 = (Z ′Z)
−1
Z ′W Ω̂−1a0/

(
a′0Ω̂−1a0

)
,

with a0 = (β0 1)′. Then the score of the LIML estimator, evaluated under the null is

given by x̂′L0 (y − xβ0) = x̂′L0u0, where x̂L0 = Zπ̂L0, and the LM test statistic is given by

LM =
u′0x̂L0 (x̂′L0x̂L0)−1 x̂′L0u0

σ̂2
0

. (8)

Under the null, LM has a limiting χ2
1 distribution, again independent of the strength of

the instruments.

An interesting link between AR and the estimators π̂L0 and π̂ is that the AR statistic
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is equal to the Hausman test statistic,

H = (π̂ − π̂L0)′ (V âr (π̂)− V âr (π̂L0))−1 (π̂ − π̂L0) = AR. (9)

This follows as π̂L0 can alternatively be expressed as

π̂L0 = π̂ − (Z ′Z)−1 Z ′u0 (ω̂12 − β0ω̂22)

σ̂2
0

,

following (7), linking the definitions of Moreira (2003) and Kleibergen (2002). Further,

V âr (π̂)− V âr (π̂L0) =

(
ω̂22 −

(
a′0Ω̂−1a0

)−1
)

(Z ′Z)
−1
,

and a′0Ω̂−1a0 = σ̂2
0/
∣∣∣Ω̂∣∣∣. It follows that ω̂22−

(
a′0Ω̂−1a0

)−1

= (ω̂12 − β0ω̂22)2 /σ̂2
0 and hence

result (9) follows.

The Likelihood Ratio test we consider here is the test denoted LR1 in Moreira (2003),

which is a criterion difference test. This LR statistic is given by

LR =
u′0PZu0

σ̂2
0

− û′LPZ ûL
σ̂2
L

(10)

= AR−B
(
β̂L

)
,

where B
(
β̂L

)
is the Basmann (1960) test for overidentifying restrictions in model (1),

with B
(
β̂L

)
= nκ̂. Under standard strong instrument asymptotics, LR has a limiting

χ2
1 distribution. However, under weak instruments, its distribution is not invariant with

respect to the value of πn = c/
√
n, unlike AR and LM . As Moreira (2003) showed, the

asymptotic conditional distribution of LR under the null, conditional on the value of the

π̂L0-based Wald test statistic for testing H0: π = 0,

τ0 = π̂′L0 (V âr (π̂L0))−1 π̂L0 =
a′0Ω̂−1W ′PZW Ω̂−1a0

a′0Ω̂−1a0

, (11)

is given by

f (LR|τ0) =
1

2

(
ξ1 + ξkz−1 − τ0 +

√
(ξ1 + ξkz−1 + τ0)2 − 4ξkz−1τ0

)
,
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where ξ1 and ξk−1 are independent χ2
1 and χ2

kz−1 distributed random variables. Conditional

critical values for the LR test can then be simulated, or the conditional p-values calculated

by numerical integration, Moreira (2003), Andrews et al. (2007), and Mikusheva and Poi

(2006), resulting in correct size for this conditional LR (CLR) test, also when instruments

are weak or uninformative.

Conditional tests with correct size under the null in weakly identified models can also

be obtained for standard Wald tests, for example based on 2SLS, LIML, Fuller and bias-

corrected 2SLS estimators, see Andrews, Moreira, and Stock (2007) and Mills, Moreira,

and Vilela (2014). Mills et al. (2014) provide the details for obtaining the distributions

of these tests conditional on τ0, and they also considered one-sided conditional t-tests. A

LIML-based test considered by Mills et al. (2014) is given by

W0

(
β̂L

)
= t0(β̂L)2 =

(
β̂L − β0

)2

(x′PZx− nκ̂ω̂22)

σ̂2
0

. (12)

The difference with the standard LIML-based Wald test is the use of the restricted esti-

mator σ̂2
0 instead of the unrestricted σ̂2

L. We show that the W0

(
β̂L

)
statistic is identical

to the LR statistic, as stated in the following proposition.

Proposition 1. Let LR be as defined in (10) and W0(β̂L) be as defined in (12). Then

W0

(
β̂L

)
= LR.

Proof. See Appendix A.

It follows from Proposition 1 and the results in Mills et al. (2014) that the conditional

W0(β̂L) (CW0(β̂L)) and CLR tests are also equivalent. For the just-identified case, kz = 1,

it follows that W0

(
β̂IV

)
= LR = AR = LM , where β̂IV = (z′x)−1 z′y. The equivalence

of W0

(
β̂IV

)
and AR was derived by Feir, Lemieux, and Marmer (2016), see also Lee,

McCrary, Moreira, and Porter (2020).

We explain features of the fixed Σ design power curve for the CLR test on the basis

of the representation of the LR statistic as W0(β̂L) in the next section. Before we do so,

we discuss an alternative version of the LR test statistic, which has the same conditional

properties, but which does not seem to have been used in applied work.
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2.1 Sargan Version of the CLR Test

The LIML-based Sargan (1958) test for overidentifying restrictions is given by

S
(
β̂L

)
=
û′LPZ ûL
û′LûL/n

,

and the Stock and Wright (2000) S statistic is

S (β0) =
u′0PZu0

u′0u0/n
.

Then an alternative LR test statistic is given by the criterion difference

LRS = S (β0)− S
(
β̂L

)
.

This statistic is obtained by replacing Ω̂ above by Σ̂W = W ′W/n. A conditional CLRS

statistic can be defined in a similar manner by conditioning on the π̂L0,Σ̂W
-based Wald

test for H0: π = 0. The CLRS test has the same asymptotic properties as the CLR test.

3 Power Curves

As Andrews et al. (2019, p 466) observe, if Ω is held fixed then Σ varies with β in the

following way

Σ (β) =

[
ω11 − 2βω12 + β2ω22 ω12 − βω22

ω12 − βω22 ω22

]
. (13)

It is common for simulations based on the fixed Ω design to set ω11 = ω22 = 1 and

ω12 = ρΩ, from which it follows that

σ2
u (β) = 1− 2βρΩ + β2, (14)

σuv (β) = ρΩ − β. (15)

For testing H0: β = 0, it follows that under the null, Σ (0) = Ω, and so ρΩ is then an

indicator of the degree of endogeneity in the null model only.

Figure 1 displays the values of ρuv (β) = σuv (β) /σu (β) and σ2
u (β) as a function of

β for values of ρΩ = 0, 0.5 and 0.95. The latter two values have often been used in

simulations. As is clear from the formulae (14) and (15), and highlighted by Figure 1, for
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Figure 1: Values of ρuv and σ2
u as a function of β when holding Ω =

[
1 ρΩ

ρΩ 1

]
constant.

every value of β the endogeneity and variance properties of the structural model change.

The correlations ρuv are positive for β < ρΩ and negative for β > ρΩ, approaching 1 and

−1 quite rapidly, especially for ρΩ = 0.95.

The representation of the LR statistic as W0

(
β̂L

)
enables us to better understand

the weak instrument power properties of the LR and CLR tests in the fixed Σ design,

and to link them to those of the fixed Ω design via the representation in (13). Holding Σ

fixed while varying the value of β does affect the location of the LIML estimator β̂L, but

not its variance. From the weak instrument asymptotic results of Stock and Yogo (2005),

we find that the LIML estimator is median unbiased but is skewed to the left if ρuv > 0

and skewed to the right when ρuv < 0. From this it follows that the power function of an

infeasible LIML-based Wald test for H0: β = β0 that uses the true unknown σ2
u instead of

the variance estimator σ̂2
L is asymmetric when ρuv 6= 0. For δ > 0, if ρuv > 0 then the

power of this unfeasible test is higher for β = β0 − δ than for β = β0 + δ and vice versa

when ρuv < 0.

For the fixed Σ design, treating Ω (β) known, we have for σ2
0 (β) in the denominator

of W0

(
β̂L

)
in (12), that

σ2
0 (β) = b′0Ω (β) b0 = σ2

u − 2 (β0 − β)σuv + (β0 − β)2 σ2
v .

It follows that σ2
0 (β) is minimised at β = βσ = β0 − σuv

σ2
v

= β0 − ρuv σuσv , with σ2
0 (βσ) =

σ2
u −

σ2
uv

σ2
v

= σ2
u (1− ρ2

uv). Therefore, if ρuv > 0, it follows that σ2
0 (β) is minimised for a

9



value of β < β0, and vice versa. Together with the skewness of the LIML estimator, it is

then clear that the asymptotic power function of the LR test for H0:β = β0 is asymmetric

when ρuv 6= 0. For δ > 0, the power is higher when β = β0 − δ than when β = β0 + δ if

ρuv > 0, and vice versa if ρuv < 0.

It follows that σ2
0 (βσ) → 0 for |ρuv| → 1. As Davidson and MacKinnon (2015, pp

831-832) show, for λ > 0, nκ̂
d→ χ2

kz−1 when |ρuv| → 1. Further, the distribution of x′Pzx

and the value of ω22 = σ2
v are not affected by ρuv. It therefore follows that LR → ∞

when β = βσ and |ρuv| → 1, resulting in the power of the LR test then going to 1. When

ρuv → 1, the point where the power of the LR test goes to 1 lies to the left of β0 at

βσ = β0 − σu
σv

. This is the situation we depict in the right panel of Figure 2 below.

For the CLR test, the critical values depend on the value of τ0, which changes with

different values of β. They range from the critical values of the χ2
1 distribution as τ0 (β)→

∞ to the critical values of the χ2
kz

distribution as τ0 (β)→ 0 (Moreira, 2003). It therefore

follows that the power of the CLR test also approaches 1 when β = βσ and |ρuv| → 1.

The non-centrality parameter of the limiting non-central chi-squared distribution of

τ0(β) is given by

ncτ0(β) = σ2
vλ

(
a′ (Ω (β))−1 a0

)2

a′0 (Ω (β))−1 a0

=
λ

σ2
u (1− ρ2

uv)

(σ2
u − σuv (β0 − β))

2

σ2
0 (β)

.

For λ > 0, it follows that ncτ0 (βnc) = 0 for βnc = β0 − σ2
u

σuv
= β0 − 1

ρuv
σu
σv

. Further, for

β 6= {βσ, βnc} it follows that ncτ0(β) → ∞ for |ρuv| → 1, whereas ncτ0 (βσ) = λ. The

maximum of ncτ0(β) is obtained at β = β0, with ncτ0(β0) = λ
1−ρ2uv

. As the critical values of

the CLR test are a decreasing function of τ0 (β) and hence of ncτ0(β), and because ncτ0(β)

is asymmetric around β0, it is not a priori clear whether the weak instruments asymmetry

of the power function of the LR test is carried over to that of the CLR test, but in the

simulations in the literature this has been found to be the case, as confirmed below.

Whilst the standard 2SLS-based Wald tests have their largest weak instrument size

distortions at |ρuv| = 1, see Stock and Yogo (2005), this is not the case for the LR

test. In fact, for λ > 0, the LR test has no size distortion when |ρuv| → 1, as then

ncτ0(β0) = λ
1−ρ2uv

→ ∞, see also Andrews et al. (2019). The non-centrality parameter

ncτ0(β0) is minimised at ρuv = 0, and hence the weak instrument size distortion of the LR

test is maximum at ρuv = 0, see Figure B.1 in Appendix B for an illustration.
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Figure 2: Asymptotic power of LR and CLR tests holding Σ =

[
1 ρuv
ρuv 1

]
constant,

λ = 1, kz = 5.

Figure 2 shows the asymptotic power curves, calculated as in Andrews et al. (2006),

for the fixed Σ design with σ2
u = σ2

v = 1 and for the values of ρuv = 0.5 and ρuv = 0.99.

This is for a very weak instrument setting of λ = 1 and for kz = 5. Throughout, the

significance level is 5%. The results confirm the asymmetry of the LR test as derived

above, which is maintained by the CLR test. Especially for the high endogeneity case of

ρuv = 0.99 the asymmetry is severe, as expected. When ρuv = 0.5, the CLR test corrects

the quite large size distortion of the LR test, but it has low power everywhere, due to

the weakness of the instruments. When ρuv = 0.99, the differences between the LR and

CLR tests are small as expected, but even in this very weak instrument setting, the power

of the CLR test is equal to 1 when β = βσ = −0.99, confirming the derivations above.

These power curves of the CLR test are very similar to the ones presented by Stock et al.

(2002) and Davidson and MacKinnon (2008).

The asymmetry of the power curve for the fixed Σ design, together with the relation-

ship between Σ (β) and Ω in the fixed Ω design as depicted in Figure 1, explains the

behaviour of the power curve for the fixed Ω design. In Figure 3, we overlay the power

curve for the fixed Ω design, with ω11 = ω22 = 1 and ω12 = ρΩ, to those of fixed Σ (β∗)

designs for different values of β∗, such that σ2
u (β∗) = 1− 2β∗ρΩ +β∗2, σuv (β∗) = ρΩ−β∗,

and σ2
v = 1, satisfying (13) at β = β∗, but then holding these constant whilst varying the

value of β and testing H0: β = β0. Hence, for any given choice of β∗, the fixed Ω and

fixed Σ (β∗) power curves coincide at β = β∗. At other values of β the difference is that
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the fixed Σ (β∗) design holds Σ constant at Σ (β∗), while in the fixed Ω design ρuv and σ2
u

vary with β as shown in Figure 1.

Differences in the behaviour of σ2
0 in the fixed Ω and fixed Σ (β∗) designs are an im-

portant, and tractable, element in understanding why the two designs yield very different

power curves. In the fixed Ω design σ2
0 is not a function of β, and with β0 = 0 we have

here that σ2
0 = b′0Ωb0 = 1. In contrast, in the fixed Σ (β∗) design, σ2

0 (β) does vary with

β. More specifically, in the fixed Σ (β∗) design, for a given choice of β∗, we have that

σ2
0 (β) = σ2

u (β∗) − 2 (β0 − β)σuv (β∗) + (β0 − β)2 σ2
v . It follows, for β0 = 0, that in this

design σ2
0 (β) is minimised at β = β∗σ = β∗ − ρΩ, where σ2

0 (β∗σ) = 1 − ρ2
Ω. Hence, for

ρΩ = 0, σ2
0 in the fixed Ω design is always – regardless of the value of β – at the minimum

value of 1 attained by σ2
0 (β) in the fixed Σ (β∗) design. For ρΩ = 0, the power curve of

the fixed Ω design then crosses those of the fixed Σ(β∗) designs very close to the points

of maximum power of the fixed Σ(β∗) designs, as shown in the left panel of Figure C.1 in

Appendix C.

When ρΩ 6= 0, the Ω design is not on the minimum σ2
0 (β∗σ) path of the fixed Σ (β∗)

designs, but it is not far away from it. The left panel of Figure 3 shows the power curve

for the fixed Ω design with ρΩ = 0.5, again for λ = 1 and kz = 5. Even in this very weak

instrument setting, power approaches 1 for large absolute values of β, very unlike the

power curve for the fixed Σ design with ρuv = 0.5. In the right panel, this fixed Ω power

curve is overlayed by the fixed Σ (β∗) power curves, for values of β∗ = −4,−2, 1, 3, 5. It

is clear that the fixed Ω power curve goes through the points close to the maxima of the

fixed Σ (β∗) power curves, in this case especially for positive and large absolute values

of β. A similar pattern is found for ρΩ = 0.95 as shown in right panel of Figure C.1 in

Appendix C.

4 LIML- and Fuller-Based CW and CW0 Tests

Moreira (2003) compared the behaviour of the conditional 2SLS-based Wald test to that

of the CLR test in a fixed Σ design. Andrews et al. (2007) compared the behaviours

of the 2SLS-, LIML- and Fuller(1)-based CW tests to that of the CLR test in the fixed

Ω design. They find that the CW -Fuller test performs best of the three conditional

Wald tests, but that its performance is, overall, “very poor relative to the CLR test”
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Figure 3: Asymptotic power of CLR test, λ = 1, kz = 5. Left panel holding Ω constant,
ρΩ = 0.5. Right panel holding Σ (β∗) fixed for various values of β∗, with σ2

u (β∗) =
1− 2β∗ρΩ + β∗2 and σuv (β∗) = ρΩ − β∗, ρΩ = 0.5.

(Andrews et al., 2007, p 131). Mills et al. (2014) compared the conditional t-test versions

for one-sided tests in the fixed Ω design and found the 2SLS and Fuller versions to have

good performance. They also analysed the performances of CW0

(
β̂L

)
and CW0

(
β̂Full

)
for two-sided tests, but again for the fixed Ω design only. As far as we are aware, the

performances of these conditional tests have not been evaluated under the fixed Σ design,

which is what we do here. We compare the performances of the CW -LIML, CW -Fuller,

CLR/CW0-LIML and CW0-Fuller tests, keeping Σ fixed for different values of β, with

σ2
u = σ2

v = 1 and for ρuv = 0, 0.25, 0.50, 0.75, testing H0: β = 0. As above, kz = 5.

Figure 4 shows the power curves for an instrument strength of λ/kz = 2. Appendix

D further presents the power curves for λ/kz = 0.5, 1 and 4. We follow the practice in

the literature to report the rejection frequencies of the tests as a function of β
√
λ. At

low levels of endogeneity, ρuv = 0 and ρuv = 0.25, the behaviour of the CW -LIML and

CW -Fuller tests are virtually identical and they are the most powerful across the range of

values of β
√
λ when ρuv = 0. For ρuv = 0.25 they are also most powerful, but for a small

bias of the tests for small negative values of β
√
λ. The bias of the CW tests increases with

increasing values of ρuv. The CW0-Fuller test is less biased than the CW tests. Its power

dominates that of the CLR test at the lower endogeneity levels ρuv = 0 and ρuv = 0.25.

At the higher level of ρuv = 0.5, the power of the CW0-Fuller test also dominates that of

the CLR test except for some negative values of β
√
λ close to 0, and where the difference

in power between the two tests is small. At the higher level of endogeneity, ρuv = 0.75,
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Figure 4: Power curves for CW -LIML, CW -Fuller, CLR/CW0-LIML, and CW0-Fuller
tests for fixed Σ design, kz = 5 and λ/kz = 2, for different values of ρuv.

the CW -tests and the CW0-test have more power than the CLR test for positive values

of β
√
λ, whereas the CLR test dominates at negative values of β

√
λ.

Whilst the CLR test has been shown to have power close to the two-sided power

envelope for unbiased tests (Andrews et al., 2007), the results here show that the biased

CW and CW0-Fuller tests can have more power than the CLR test in low to moderate

endogeneity environments, in which case there is also only a small to moderate bias in

these tests. This seems an important observation, as this is a situation that may well be

encountered in practice.
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Appendix

A Proof of Proposition 1

It follows from (7) that

û′LPZx = û′LZπ̂ = û′LZπ̂L +
û′LPZ ûL
σ̂2
L

(
ω̂12 − β̂Lω̂22

)
= B

(
β̂L

)(
ω̂12 − β̂Lω̂22

)
,

as û′LZπ̂L = û′Lx̂L = 0.

As u0 = ûL + x
(
β̂L − β0

)
, it follows that

u′0PZu0

σ̂2
0

=
û′LPZ ûL + 2û′LPZx

(
β̂L − β0

)
+
(
β̂L − β0

)2

x′PZx

σ̂2
0

=
û′LPZ ûL
σ̂2

0

+
2B
(
β̂L

)(
β̂L − β0

)
σ̂2

0

(
ω̂12 − β̂Lω̂22

)
+

(
β̂L − β0

)2

x′PZx

σ̂2
0

.

Further

û′LPZ ûL
σ̂2

0

− û′LPZ ûL
σ̂2
L

=
û′LPZ ûL
σ̂2
Lσ̂

2
0

(
σ̂2
L − σ̂2

0

)
=

B
(
β̂L

)
σ̂2

0

((
β̂2
L − β2

0

)
ω̂22 − 2

(
β̂L − β0

)
ω̂12

)
.

As (
β̂2
L − β2

0

)
ω̂22 = −

(
β̂L − β0

)2

ω̂22 + 2β̂L

(
β̂L − β0

)
ω̂22,

and B
(
β̂L

)
= nκ̂, it follows that

u′0PZu0

σ̂2
0

− û′LPZ ûL
σ̂2
L

=

(
β̂L − β0

)2 (
x′PZx−B

(
β̂L

)
ω̂22

)
σ̂2

0

=

(
β̂L − β0

)2

(x′PZx− nκ̂ω̂22)

σ̂2
0

= W0

(
β̂L

)
.
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B Size Distortion of the LR Test
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Figure B.1: Size properties of LR test for different values of ρuv and instrument strength
λ. kz = 5.

C Power Curves of CLR Test, Fixed Ω Design and

Fixed Σ (β∗) Designs
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Figure C.1: Asymptotic power of CLR test, λ = 1, kz = 5. Fixed Ω design, left panel
ρΩ = 0, right panel ρΩ = 0.95 and fixed Σ (β∗) designs for various values of β∗, with
σ2
u (β∗) = 1− 2β∗ρΩ + β∗2 and σuv (β∗) = ρΩ − β∗.
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D Power Curves of CLR, CW -Fuller and CW0-Fuller

Tests

-6 -4 -2 0 2 4 6

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
o
w

e
r

uv
 = 0

CW-Liml

CW-Full

CLR/CW
0
-Liml

CW
0
-Full

-6 -4 -2 0 2 4 6

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
o
w

e
r

uv
 = 0.25

CW-Liml

CW-Full

CLR/CW
0
-Liml

CW
0
-Full

-6 -4 -2 0 2 4 6

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
o
w

e
r

uv
 = 0.5

CW-Liml

CW-Full

CLR/CW
0
-Liml

CW
0
-Full

-6 -4 -2 0 2 4 6

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
o
w

e
r

uv
 = 0.75

CW-Liml

CW-Full

CLR/CW
0
-Liml

CW
0
-Full

Figure D.1: λ/kz = 0.5, kz = 5.
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Figure D.2: λ/kz = 1, kz = 5.
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Figure D.3: λ/kz = 4, kz = 5.
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