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4 Abstract h

This paper provides a systematic
comparison of eight representative
evolutionary multiobjective algorithms
from the six angles to solve many-
objective optimization problems. The
compared algorithms are tested on four
groups of well-defined test functions,
by three performance metrics as well
as a visual observation in the decision
space. We conclude that none of the
algorithms has a clear advantage over
the others, although some of them are
competitive on most of the problems.
In addition, different search abilities of
these algorithms on the problems with
different characteristics suggest a
careful choice of algorithms for solving
a many-objective problem in hand.

Tested Algorithms and Problems

Table 1: List of some existing comparison
studies on many-objective optimization

Khare et al. (2003) Cl DTLZ
Hughes (2005) C1, C2 Custom
Purshouse and Fleming (2007)|C1 DTLZ
Corne and Knowles (2007) C4, C6 TSP
Wagner et al. (2007) C1,C2,C3,C4 DTLZ

Ishibuchi et al. (2008) C1, C2, C4, C5, C6 |Knapsack

Jaimes and Coello (2009) C1, C4, C6 DTLZ

Hadka and Reed (2012) C1, C2, C4, Co DTLZ, WFG, UF

C1: Pareto-based algorithms;

C2: Aggregation-based algorithms;

C3: Indicator-based algorithms;

C4:. Improved Pareto dominance-based algorithms;

C5: Improved diversity maintenance-based algorithms;
Cé6: Non-Pareto-based algorithms.

In this work, we consider eight EMO algorithms
selected from the above six classes.

e Nondominated Sorting Genetic Algorithm ||
(NSGA-II)

e Multiobjective Evolutionary Algorithm

based on Decomposition with PBI
(MOEA/D+PBI)

e Multiple Single Objective Pareto Sampling
(MSOPS)

e Hypervolume Estimation Algorithm (HypE)

e c-dominance Multiobjective Evolutionary
Algorithm (e-MOEA)

e Diversity Management Operator (DMO)

e Average Ranking (AR)

e Average Ranking combined with Grid
(AR+Grid)

We consider four groups of test functions and
two performance metrics

e DTLZ, WFG, TSP, and Pareto-Box problems
e HV and IGD
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Results

Table 2: Comparative Results of IGD
or HV on the 5-objective instance

DTLZ2 DTLZ3 DTLZS DTLZ7 WFG1 WFG8 WFGY TSP

NSGA-II Fair Poor Fair Good Poor Fair Fair Poor
MOEA/D Good Good Good Poor Good Fair Good Good
MSOPS Fair Poor Good Poor Poor Fair Fair Fair
HypE Fair Fair Fair Good Poor Fair Good Poor
e-MOEA Good Good Fair Good Poor Fair Fair Good
DMO Fair Poor Poor Good Poor Fair Fair Poor
AR Poor Fair Poor Fair Poor Poor Poor Poor
AR+Grid Good Fair Fair Fair Fair Good Good Good

Table 3: Comparative Results of IGD
or HV on the 10-objective instance

DTLZ2 DTLZ3 DTLZ5 DTLZ7 WFG1 WFG8 WFG9 TSP P’I‘;f;"'

NSGA-II Poor Poor Fair Fair Fair Fair Fair Poor Fair
MOEA/D Good Good Good Poor Good Poor Poor Good Poor
MSOPS Fair Poor Good Poor Poor Fair Fair Good Fair
HypE  Fair Fair Fair Good Good Good Good Poor Poor

e-MOEA Good Poor Fair Fair Poor Poor Poor Fair Good
DMO Fair Poor Fair Poor Fair Fair Fair Poor Fair

AR Poor Fair Poor Poor Poor Good Fair Fair Poor

AR+Grid Good Fair Poor Good Good Good Fair Good Good

Figure 1: The final solution set of the eight
algorithms on the ten-objective DTLZ7,
shown by parallel coordinates
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/Based on the examination on these continuous and combinatorial
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With many disconnected Pareto optimal regions, DTLZ7 tests an
algorithm’s ability to maintain subpopulations in
disconnected portions of the objective space. The upper
bound of the last objective in the Pareto front of DTLZ7 is
equal to 20 for the 10-objective instance

Figure 2: The final solution set of the eight
algorithms in the decision space on the ten-
objective Pareto-Box problem
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With a high-dimensional objective space and a two-dimensional
decision space, the Pareto-Box problem is used to visually
investigate the distribution of solutions in the decision space.
The Pareto optimal region is the inside of the regular
decagon.

The solutions of MOEA/D shown here are obtained by
MOEA/D+PBI with penalty parameter 5.0; A much better

result can be obtained by MOEA/D+TCH and MOEA/D+PBI with
penalty parameter 0.1.
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problems, a summary observation of the eight algorithms can be made:

e NSGA-Il does not always perform the worst on all many-objective
problems. On some problems with relatively low dimensions, such
as the 5-objective DTLZ7 and WFG8, NSGA-Il outperforms some
algorithms designed specially for many-objective optimization.

e The search ability of MOEA/D has sharp contrasts on different
problems. It works very well on DTLZ2, DTLZ3, WFG1, and TSP, but
encounters great difficulties on the DTLZ7 and WFG8. From the
results on the WFG and TSP suites, MOEA/D appears to be more
competitive in relatively low-dimensional problems.

o Similar to MOEA/D, MSOPS struggles on the problem with the
disconnected Pareto front (DTLZ7). But MSOPS performs the best on
the degenerate problem DTLZ5.

o Although favoring the boundary solutions, HypE shows advantages in
a higher-dimensional objective space. This can be obtained from
the results of the DTLZ7 and three WFG test instances.

e &-MOEA performs well on most of the 5-objective test instances.
However, the instability of the archive size will count against the
evolutionary process of the algorithm as the number of objectives
further increases.

o By adaptively controlling the diversity maintenance mechanism,
DMO has a clear advantage over NSGA-Il on the DTLZ suite. However
for the WFG and TSP suites, the advantage vanishes, NSGA-Il even
outperforming DMO on WFG8 and most of the TSP instances.

o Due to the lack of diversity maintenance, AR is the algorithm with
poor comprehensive performance on all the test problems, except
for the 10-objective TSP, where AR is clearly superior to HypE and
DMO.

o Despite being competitive on most of the test instances, AR+Grid
has difficulty on the problem with many local optima, such as DTLZ3.
This is because the neighbor punishment strategy in AR+Grid may
make some “bad” individuals rank higher than their better
competitors.

Figure 3: The box plot of the archive size of ¢-
MOEA on 30 runs for all 10-objective problems
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Conclusions

Our study has revealed that there is not a clear performance gap
between algorithms for all the test problems. The considered
algorithms have their own strengths on different test instances.
This means that a careful choice of algorithms must be made
when dealing with a many-objective problem in hand.

Another observation of our study is that none of the algorithms can
produce a well-converged and well-distributed solution set even
for some “easy” problems, such as the Pareto-Box problem. This
indicates the infancy of evolutionary many-objective
optimization and highlights the need for further development in
the area.
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