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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Part I

Theory of gate dynamics: voltage clamp
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary
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Gates and gating particles
The K+ current as an example

Recall that Hodgkin & Huxley
proposed that control of gates
originated in movement of charged
particles in the membrane

A simplification - but if we read
‘conformational change’ for
‘movement of gating particle’ we
have a modern interpretation

The state of the gate is controlled
by these particles becoming bound
to sites on the external side of the
channel pore
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Review of gate dynamics
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The K+ current - a summary
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First order kinetics
K+-current

Recall that the gate for the K+-current could be described by
a First order kinetics

First order kinetics: K+-current

dn

dt
= αn(Vm)(1− n)− βn(Vm)n (1)
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A strategy for finding gate parameters

We can’t find the rate constants directly. But we can find
quantities related to them that are accessible to measurement

The key to this programme lies in the ability to Clamp the
membrane at some voltage Vc accurately and indefinitely
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Equilibrium under voltage clamp

Under sustained clamp, n(Vm, t) will reach equilibrium

n(Vm, t)→ n∞(Vc)

At equilibrium, dn/dt = 0 so from (1)

αn(Vc)(1− n∞(Vc)) = βn(Vc)n∞(Vc)

solving for n∞(Vc)

n∞(Vc) =
αn(Vc)

αn(Vc) + βn(Vc)
(2)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary
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A new gating variable: n∞(Vc)

Equation (2) defines the variable n∞(Vm) for any Vm

n∞(Vm) =
αn(Vm)

αn(Vm) + βn(Vm)
(3)

with the interpretation that, if Vm was held constant long
enough, the gating variable n(Vm, t) would approach n∞(Vm)

K.N. Gurney PSY6304: Single neuron models 5
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The Na+ current

Another new gating variable τn(Vm)

Put

τn(Vm) =
1

αn(Vm) + βn(Vm)
(4)

The choice of notation gives the game away... τn will turn out
to play the role of a time constant

Then (3) and (4) may be solved for αn, βn

αn =
n∞
τn

(5)

βn =
1− n∞

τn
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Reformulation of gate dynamics

Substituting (5) in the rate kinetics equation (1)

Activation gate dynamics using τn, n∞

dn

dt
=

n∞(Vm)− n

τn(Vm)
(6)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Solution of n-gate dynamics under voltage clamp

under clamp with Vm = Vc , (6) becomes

dn

dt
=

n∞(Vc)− n

τn(Vc)
(7)

where, because Vc is constant, τn(Vc) and n∞(Vc) are
constant

Suppose that

Vm(t) =

{
Vrest if t < t0
Vc if t ≥ t0

Equation(7) can then be solved analytically for t ≥ t0

n(t) = n∞(Vc)− [n∞(Vc)− n∞(Vrest)] exp[−(t − t0)/τn(Vc)] (8)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Solution of n-gate dynamics under voltage clamp

n(t) =

 n∞(Vc)− [n∞(Vc)− n∞(Vrest)]e
−(t−t0)/τn(Vc ) if t ≥ t0

n∞(Vrest) if t < t0

Notice that τn occurs in the
role of a time constant
governing the speed of the
exponential rise time of n(t).
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary
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Finding forms for gating variables

Unlike αn and βn, n∞(Vm) and τn(Vm) are measurable

This is plausible because, under voltage clamp

IK (t) = gK
maxn

q(t)(EK − Vm)

IK (t) is a (measurable) current, and we know n(t) from (8)
and how it depends on n∞(Vm) and τn(Vm)

More details are given in the next Part of the lecture

But now, we look at the typical forms for n∞(Vm) and
τn(Vm) and how to interpret them
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Finding forms for gating variables
A curve fitting exercise - n∞(Vc)

Typically n∞(Vm) is a
monotonic increasing
function of Vm that is
roughly S-shaped...
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Finding forms for gating variables
A curve fitting exercise - τn(Vc)

...while τn(Vm) is often
bell-shaped

However, the functional
forms for n∞(Vc), τn(Vc) are
purely phenomenological.
The curves shown are simply
best fits to data using
combinations of
exponentials etc.

Also, the ‘number of
particles’ q required to best
fit the data is 4
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Finding forms for gating variables
Rate constants are theoretically plausible

Sometimes τ and n∞ are shown together

However, by solving for
αn, βn from n∞, τn, the
basic ‘shape’ of the
functions αn(V ), βn(V ) are
consistent with theoretical
treatments of kinetics
(Johnston & Wu page 130 and

153)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The K+ current: bringing the threads together

K+ current (with kinetic rate constants)

IK = gK (EK − Vm) (9)

gK = gK
maxn

4 (10)

dn

dt
= αn(1− n)− βnn (11)

where αn, βn are functions of Vm; α(Vm), β(Vm)
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The K+ current: bringing the threads together

K+ current (voltage clamp based formulation)

IK = gK (EK − Vm)

gK = gK
maxn

4

dn

dt
=

n∞ − n

τn
(12)

where n∞, τn are functions of Vm; n∞(Vm), τn(Vm)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The K+ current: bringing the threads together

Relationship between two formulations

n∞ =
αn

αn + βn
(13)

τn =
1

αn + βn
(14)

or solving for αn, βn

αn =
n∞
τn

(15)

βn =
1− n∞

τn
(16)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Gating particle dynamics
The Na+ current: review

Na+ current is an inactivating current: it activates on
depolarisation but also inactivates (is ‘shut down’) after a
delay

In order to accommodate the activation and inactivation
processes, we need two kinds of ‘gating particle’, separately
controlling the activation gate m, and inactivation gate h

Both gates have to be open

P(m-open) = m3 (it turns out you need 3 ‘m-particles’ bound
simultaneously)

P(h-open) = h (single inactivation gating ‘particle’)

P(gate-open) = P(m-open)P(h-open) = m3h
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P(m-open) = m3 (it turns out you need 3 ‘m-particles’ bound
simultaneously)

P(h-open) = h (single inactivation gating ‘particle’)

P(gate-open) = P(m-open)P(h-open) = m3h
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

Gating particle dynamics
The Na+ current

Let gNa be the conductance of the Na+ current

Let gNa
max be the conductance if all channels were open

gNa = gNa
maxP(gate-open) = gNa

maxm
3h

Both m and h gates may be treated in the same way as the n
gate for K+
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current activation gate

The steady state activation
m∞(Vm) and its time
constant τm(Vm)

Note τm � τn so that Na+

activates much more quickly
than K+ (as required)
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current inactivation gate

The steady state
inactivation h∞(Vm) and its
time constant τh(Vm)

Note that h∞ declines with
depolarisation which is how
we would expect an
inactivation gate to work
(review qualitative
description at start of
lecture)

τh � τm so that inactivation
takes place after activation
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current: bringing the threads together

Na+ current (with kinetic rate constants)

INa = gNa(ENa − Vm) (17)

gNa = gNa
maxm

3h (18)

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh (19)

where αm, βm, αh, βh are functions of Vm

K.N. Gurney PSY6304: Single neuron models 5



Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current: bringing the threads together

Na+ current (with kinetic rate constants)

INa = gNa(ENa − Vm) (17)

gNa = gNa
maxm

3h (18)

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh (19)

where αm, βm, αh, βh are functions of Vm

K.N. Gurney PSY6304: Single neuron models 5



Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current: bringing the threads together

Na+ current (with kinetic rate constants)

INa = gNa(ENa − Vm) (17)

gNa = gNa
maxm

3h (18)

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh (19)

where αm, βm, αh, βh are functions of Vm

K.N. Gurney PSY6304: Single neuron models 5



Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current: bringing the threads together

Na+ current (voltage clamp based formulation)

INa = gNa(Vm − ENa) (20)

gNa = gNa
maxm

3h (21)

dm

dt
=

m∞ −m

τm

dh

dt
=

h∞ − h

τh
(22)

where m∞, h∞, τm, τh are functions of Vm
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Review of gate dynamics
K+ gate dynamics under voltage clamp

Functional forms for the gating variables
The K+ current - a summary

The Na+ current

The Na+ current: bringing the threads together

Relationship between two formulations

m∞ =
αm

αm + βm
h∞ =

αh

αh + βh
(23)

τm =
1

αm + βm
τh =

1

αh + βh
(24)

or solving for α, β

αm =
m∞
τm

αh =
h∞
τh

(25)

βm =
1−m∞

τm
βh =

1− h∞
τh

(26)
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Outline

6 Voltage clamp

7 Determining K+-current gate parameters under voltage clamp
Finding Gmax

Finding p
Finding remaining parameters
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Experimental methods - why do we need to know them?

While computational neuroscience is clearly a theoretical area,
it is intimately bound up with experimental practice because
we need data for constraints

Understanding experimental methods allows us to know the
origins of data and how to interpret them
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Voltage Clamp
Principles

Measure the membrane
potential Vm in normal way
(compare internal potential
with the extracellular
potential)
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Voltage Clamp
Principles

Compare Vm with the clamp
voltage Vc ...
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Voltage Clamp
Principles

... and use the difference to
drive a current source I

In this way the current
supplied, Iclamp, is exactly
equal and opposite to that
due to the ion flux across
the membrane, Iion

Iclamp = −Iion
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Voltage Clamp
An example in simulation

Model with AP generating
K+ and Na+ currents
currents used as ‘virtual
data’

Vc = 0, and total clamp
current Iclamp is shown

It is conventional in
physiology papers to show
this rather than Iion
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Voltage Clamp
Dissecting currents

By poisoning current-specific
channels, we can dissect out
individual currents

Note clamp currents are
again shown (e.g. IK is
negative, but the Iclamp

required is positive)
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Outline

6 Voltage clamp
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding gmax

Can measure conductance
gK using

gK = IK/(Vm − EK )

since Vm = Vc , and we
know IK and EK

Also, gK = gK
maxn

q, with
0 ≤ n ≤ 1
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding gmax

Conductance at equilibrium
gK
∞(Vc) is

gK
∞(Vc) = gK

maxn
p
∞(Vc)

As Vc increases, it appears
that gK

∞(Vc) increases and is
reaching its limiting value
gK
max with np

∞(Vc) = 1

So, with sufficiently large Vc

gK
∞(Vc) ≈ gK

max

K.N. Gurney PSY6304: Single neuron models 5



Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding gmax

Conductance at equilibrium
gK
∞(Vc) is

gK
∞(Vc) = gK

maxn
p
∞(Vc)

As Vc increases, it appears
that gK

∞(Vc) increases and is
reaching its limiting value
gK
max with np

∞(Vc) = 1

So, with sufficiently large Vc

gK
∞(Vc) ≈ gK

max

K.N. Gurney PSY6304: Single neuron models 5



Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding gmax

Conductance at equilibrium
gK
∞(Vc) is

gK
∞(Vc) = gK

maxn
p
∞(Vc)

As Vc increases, it appears
that gK

∞(Vc) increases and is
reaching its limiting value
gK
max with np

∞(Vc) = 1

So, with sufficiently large Vc

gK
∞(Vc) ≈ gK

max

K.N. Gurney PSY6304: Single neuron models 5



Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Outline

6 Voltage clamp

7 Determining K+-current gate parameters under voltage clamp
Finding Gmax

Finding p
Finding remaining parameters

K.N. Gurney PSY6304: Single neuron models 5



Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding p
The data

The following phase of
analysis occurs for fixed Vc

The (virtual cell) data
points are for the normalised
conductance np(t)

np(t) =
gK (t)

gK
max

which lies between 0 and 1
(typically, gK

max � 1)
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding p
Fitting the data

p∗ = 1 and n∗∞ = np
∞ = 0.656

Let p∗ be an estimate of p;
calculate the corresponding
estimate n∗∞ of n∞

n∗∞ = (np
∞)

1
p∗

Using n∗∞ in the solution in
(8) for n(t), vary τn for the
best fit to the data
(automatically or by hand)

The blue line is the best fit
for p∗ = 1
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding p
Fitting the data

p∗ = 2 and n∗∞ = (np
∞)

1
2 = 0.81 p∗ = 3 and n∗∞ = (np

∞)
1
3 = 0.869
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding p
Fitting the data

p∗ = 4 and n∗∞ = np
∞ = 0.9

p = 4 gives a good fit ...

In fact it’s an exact fit -
because it was used to
derive the ‘data’ !
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Voltage clamp
Determining K+-current gate parameters under voltage clamp

Finding Gmax
Finding p
Finding remaining parameters

Finding n∞(Vc)

Armed with gK
max and p we

can now find n∞(Vc)

n∞(Vc) =

[
gK
∞(Vc)

gK
max

] 1
p

Then find τn(Vc) by fitting
n(t) at each Vc (described
by (8)) to the corresponding
data

Finding parameters for the
Na+ current requires more
complex voltage clamp
protocols...
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Augmenting the formalism
Summary
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8 The ‘zoo’ of active ionic-current
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Modelling the ‘zoo’ of ion-channels is potentially tractable

Most K+,Na+ voltage gated
currents can be described using the
formalism developed here

The diversity of K+ channels is
illustrated in the figure (determined
using genetic and proteomic
techniques). These are, all in
principle, amenable to the HH
formalism. (Same applies to Na+

channels)
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Active currents allow a wide diversity of behaviour
Mechanism for neural computation

The diversity of active currents supports a corresponding
diversity of neural behaviours

These behaviours supply the building blocks or mechanisms
on which neural computation is founded
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Basic action potential generation with Na+, K+
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Enhanced repolarisation - reduction of firing rate

Ca2+-activated K+ current, and high threshold Ca2+ current IL
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Delay to onset of firing - temporal filter

Transient K+ current IA
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Decreased response

persistent K+ current IM
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Firing rate accommodation or adaptation

Slow Ca2+-activated K+ current, IAHP

K.N. Gurney PSY6304: Single neuron models 5



The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Rebound bursting 1

Bursting when excited from hyperpolarisation but...
Transient Ca2+ current IT
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Neural excitability
Rebound bursting 2

No bursting when excited from resting potential
Transient Ca2+ current IT
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

Outline
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

HH formalism augmented
Ca2+-currents

Basic form of HH-current

I (Vm, t) = gmaxm(Vm, t)Pn(Vm, t)Q(Erev − Vm)

showing dependence of variables on Vm and t

Ca2+-currents require an extension of the formalism where the
driving force (Erev − Vm) is replaced by a more complex
voltage dependent term, and there may be additional gating
variables dependent on [Ca2+]in, as well as those dependent
on Vm and t
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The ‘zoo’ of active ionic-current
Neural excitability and neural computation

Augmenting the formalism
Summary

HH formalism augmented
Synaptic input and morphology

Synaptic input can be framed (phenomenologically) in a
conductance based framework allowing incorporation in the
HH formalism

Everything we have done so far assumes a uniform membrane
potential over the entire neural surface; clearly wrong -
neurons have complex morphologies with spatially varying Vm

Dividing the membrane into smaller iso-potential
compartments overcomes this problem

Both issues dealt with next time...
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Summary

There is an alternative formulation of the Hodgkin Huxley
equations in terms of variables (n∞, τn) more amenable to
experimental determination (than their rate-kinetic
counterparts α, β)

This alternative is based on the voltage clamp technique

Carefully constructed experiments are required to determine
n∞, τn

The HH formalism is extremely powerful, and can be extended
to accommodate most channels, synaptic input and
morphology
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References and further reading

Reread references given in the last lecture (which will have
incorporated the voltage clamp formalism into their descriptions)
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