Single neuron models 5 Biophysical models: The Hodgkin-Huxley model (2)

Kevin Gurney

Adaptive Behaviour Research Group

K.N. Gurney PSY6304: Single neuron models 5

Part I: Theory of gate dynamics: voltage clamp formulation Part II: Experimental determination of gate parameters with voltage Part III: The power of the HH formalism

Outline

• Part I: Theory of gate dynamics: voltage clamp formulation

- Part II: Experimental determination of gate parameters with voltage clamp
- Part III: The power of the HH formalism

Part I: Theory of gate dynamics: voltage clamp formulation Part II: Experimental determination of gate parameters with voltag Part III: The power of the HH formalism

Outline of Part I

- 2 K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- The K⁺ current a summary
- 5 The Na⁺ current

Part I: Theory of gate dynamics: voltage clamp formulation Part II: Experimental determination of gate parameters with voltag Part III: The power of the HH formalism

- Part I: Theory of gate dynamics: voltage clamp formulation
- Part II: Experimental determination of gate parameters with voltage clamp
- Part III: The power of the HH formalism

Part II: Theory of gate dynamics: voltage clamp formulation Part II: Experimental determination of gate parameters with voltag Part III: The power of the HH formalism

Outline of Part II

Determining K⁺-current gate parameters under voltage clamp

Part I: Theory of gate dynamics: voltage clamp formulation Part II: Experimental determination of gate parameters with voltage Part III: The power of the HH formalism

- Part I: Theory of gate dynamics: voltage clamp formulation
- Part II: Experimental determination of gate parameters with voltage clamp
- Part III: The power of the HH formalism

Part II: Theory of gate dynamics: voltage clamp formulation Part II: Experimental determination of gate parameters with voltag Part III: The power of the HH formalism

Outline of Part III

- 9 Neural excitability and neural computation
- 10 Augmenting the formalism

Part I

Theory of gate dynamics: voltage clamp formulation

Review of gate dynamics

K⁺ gate dynamics under voltage clamp Functional forms for the gating variables The K⁺ current - a summary The Na⁺ current

- 2 K⁺ gate dynamics under voltage clamp
- 3 Functional forms for the gating variables
- The K⁺ current a summary
- 5 The Na⁺ current

Review of gate dynamics K⁺ gate dynamics under voltage clamp Functional forms for the gating variables The K⁺ current - a summary The Na⁺ current

Gates and gating particles The K⁺ current as an example

 Recall that Hodgkin & Huxley proposed that control of gates originated in movement of charged particles in the membrane Review of gate dynamics K⁺ gate dynamics under voltage clamp Functional forms for the gating variables The K⁺ current - a summary The Na⁺ current

Gates and gating particles The K⁺ current as an example

- Recall that Hodgkin & Huxley proposed that control of gates originated in movement of charged particles in the membrane
- A simplification but if we read 'conformational change' for 'movement of gating particle' we have a modern interpretation

Review of gate dynamics K⁺ gate dynamics under voltage clamp Functional forms for the gating variables The K⁺ current - a summary The Na⁺ current

Gates and gating particles The K⁺ current as an example

- Recall that Hodgkin & Huxley proposed that control of gates originated in movement of charged particles in the membrane
- A simplification but if we read 'conformational change' for 'movement of gating particle' we have a modern interpretation
- The state of the gate is controlled by these particles becoming bound to sites on the external side of the channel pore

Review of gate dynamics

 K^+ gate dynamics under voltage clamp Functional forms for the gating variables The K^+ current - a summary The Na^+ current

First order kinetics K^+ -current

• Recall that the gate for the K⁺-current could be described by a First order kinetics

First order kinetics: K⁺-current

$$\frac{dn}{dt} = \alpha_n(V_m)(1-n) - \beta_n(V_m)n \tag{1}$$

K⁺ gate dynamics under voltage clamp

- 3 Functional forms for the gating variables
- 4 The K⁺ current a summary
- 5 The Na⁺ current

A strategy for finding gate parameters

• We can't find the rate constants directly. But we can find quantities related to them that *are* accessible to measurement

A strategy for finding gate parameters

- We can't find the rate constants directly. But we can find quantities related to them that are accessible to measurement
- The key to this programme lies in the ability to Clamp the membrane at some voltage V_c accurately and indefinitely

Equilibrium under voltage clamp

• Under sustained clamp, $n(V_m, t)$ will reach equilibrium

 $n(V_m, t) \rightarrow n_\infty(V_c)$

Equilibrium under voltage clamp

• Under sustained clamp, $n(V_m, t)$ will reach equilibrium

$$n(V_m, t) \rightarrow n_\infty(V_c)$$

• At equilibrium, dn/dt = 0 so from (1)

$$\alpha_n(V_c)(1-n_\infty(V_c))=\beta_n(V_c)n_\infty(V_c)$$

Equilibrium under voltage clamp

• Under sustained clamp, $n(V_m, t)$ will reach equilibrium

$$n(V_m, t) \rightarrow n_\infty(V_c)$$

• At equilibrium, dn/dt = 0 so from (1)

$$\alpha_n(V_c)(1-n_\infty(V_c))=\beta_n(V_c)n_\infty(V_c)$$

• solving for $n_{\infty}(V_c)$

$$n_{\infty}(V_c) = \frac{\alpha_n(V_c)}{\alpha_n(V_c) + \beta_n(V_c)}$$
(2)

A new gating variable: $n_{\infty}(V_c)$

• Equation (2) defines the variable $n_{\infty}(V_m)$ for any V_m

$$n_{\infty}(V_m) = \frac{\alpha_n(V_m)}{\alpha_n(V_m) + \beta_n(V_m)}$$
(3)

with the interpretation that, if V_m was held constant long enough, the gating variable $n(V_m, t)$ would approach $n_{\infty}(V_m)$

Another new gating variable $\tau_n(V_m)$

• Put

$$\tau_n(V_m) = \frac{1}{\alpha_n(V_m) + \beta_n(V_m)} \tag{4}$$

The choice of notation gives the game away... τ_n will turn out to play the role of a time constant

Another new gating variable $\tau_n(V_m)$

• Put

$$\tau_n(V_m) = \frac{1}{\alpha_n(V_m) + \beta_n(V_m)} \tag{4}$$

The choice of notation gives the game away... τ_n will turn out to play the role of a time constant

Then (3) and (4) may be solved for α_n, β_n

$$\alpha_n = \frac{n_\infty}{\tau_n}$$
(5)
$$\beta_n = \frac{1 - n_\infty}{\tau_n}$$

Reformulation of gate dynamics

• Substituting (5) in the rate kinetics equation (1)

Activation gate dynamics using
$$\tau_n, n_\infty$$

$$\frac{dn}{dt} = \frac{n_\infty(V_m) - n}{\tau_n(V_m)}$$
(6)

Solution of *n*-gate dynamics under voltage clamp

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

Solution of *n*-gate dynamics under voltage clamp

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

• where, because V_c is constant, $au_n(V_c)$ and $n_\infty(V_c)$ are constant

Solution of *n*-gate dynamics under voltage clamp

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

- where, because V_c is constant, $au_n(V_c)$ and $n_\infty(V_c)$ are constant
- Suppose that

$$V_m(t) = \left\{egin{array}{cc} V_{ ext{rest}} & ext{if } t < t_0 \ V_c & ext{if } t \geq t_0 \end{array}
ight.$$

Solution of *n*-gate dynamics under voltage clamp

• under clamp with $V_m = V_c$, (6) becomes

$$\frac{dn}{dt} = \frac{n_{\infty}(V_c) - n}{\tau_n(V_c)} \tag{7}$$

- where, because V_c is constant, $au_n(V_c)$ and $n_\infty(V_c)$ are constant
- Suppose that

$$V_m(t) = \left\{ egin{array}{cc} V_{rest} & ext{if } t < t_0 \ V_c & ext{if } t \geq t_0 \end{array}
ight.$$

• Equation(7) can then be solved analytically for $t \ge t_0$

$$n(t) = n_{\infty}(V_c) - [n_{\infty}(V_c) - n_{\infty}(V_{rest})] \exp[-(t - t_0)/\tau_n(V_c)]$$
(8)

Solution of *n*-gate dynamics under voltage clamp

$$n(t) = \begin{cases} n_{\infty}(V_c) - [n_{\infty}(V_c) - n_{\infty}(V_{rest})]e^{-(t-t_0)/\tau_n(V_c)} & \text{if } t \ge t_0 \\ \\ n_{\infty}(V_{rest}) & \text{if } t < t_0 \end{cases}$$

 Notice that τ_n occurs in the role of a time constant governing the speed of the exponential rise time of n(t).

2 K⁺ gate dynamics under voltage clamp

3 Functional forms for the gating variables

The K⁺ current - a summary

5 The Na⁺ current

Finding forms for gating variables

• Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable

Finding forms for gating variables

- Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable
- This is plausible because, under voltage clamp

$$I_{\mathcal{K}}(t) = g_{max}^{\mathcal{K}} n^{q}(t) (E_{\mathcal{K}} - V_{m})$$

 $I_K(t)$ is a (measurable) current, and we know n(t) from (8) and how it depends on $n_{\infty}(V_m)$ and $\tau_n(V_m)$

Finding forms for gating variables

- Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable
- This is plausible because, under voltage clamp

$$I_{\mathcal{K}}(t) = g_{max}^{\mathcal{K}} n^{q}(t) (E_{\mathcal{K}} - V_{m})$$

 $I_{\mathcal{K}}(t)$ is a (measurable) current, and we know n(t) from (8) and how it depends on $n_{\infty}(V_m)$ and $\tau_n(V_m)$

• More details are given in the next Part of the lecture

Finding forms for gating variables

- Unlike α_n and β_n , $n_{\infty}(V_m)$ and $\tau_n(V_m)$ are measurable
- This is plausible because, under voltage clamp

$$I_{\mathcal{K}}(t) = g_{max}^{\mathcal{K}} n^{q}(t) (E_{\mathcal{K}} - V_{m})$$

 $I_{\mathcal{K}}(t)$ is a (measurable) current, and we know n(t) from (8) and how it depends on $n_{\infty}(V_m)$ and $\tau_n(V_m)$

- More details are given in the next Part of the lecture
- But now, we look at the typical forms for $n_{\infty}(V_m)$ and $\tau_n(V_m)$ and how to interpret them

Finding forms for gating variables A curve fitting exercise - $n_{\infty}(V_c)$

• Typically $n_{\infty}(V_m)$ is a monotonic increasing function of V_m that is roughly S-shaped...

Finding forms for gating variables A curve fitting exercise - $\tau_n(V_c)$

• ...while $\tau_n(V_m)$ is often bell-shaped

Finding forms for gating variables A curve fitting exercise - $\tau_n(V_c)$

- ...while $\tau_n(V_m)$ is often bell-shaped
- However, the functional forms for $n_{\infty}(V_c)$, $\tau_n(V_c)$ are purely *phenomenological*. The curves shown are simply best fits to data using combinations of exponentials etc.
Finding forms for gating variables A curve fitting exercise - $\tau_n(V_c)$

- ...while \(\tau_n(V_m)\) is often bell-shaped
- However, the functional forms for $n_{\infty}(V_c)$, $\tau_n(V_c)$ are purely *phenomenological*. The curves shown are simply best fits to data using combinations of exponentials etc.
- Also, the 'number of particles' *q* required to best fit the data is 4

Finding forms for gating variables Rate constants are theoretically plausible

Sometimes au and n_{∞} are shown together

• However, by solving for α_n, β_n from n_∞, τ_n , the basic 'shape' of the functions $\alpha_n(V), \beta_n(V)$ are consistent with theoretical treatments of kinetics (Johnston & Wu page 130 and 153)

Outline

2 K⁺ gate dynamics under voltage clamp

3 Functional forms for the gating variables

The K⁺ current - a summary

5 The Na⁺ current

The K⁺ current: bringing the threads together

K⁺ current (with kinetic rate constants)

$$I_{\mathcal{K}} = g_{\mathcal{K}}(E_{\mathcal{K}} - V_m) \tag{9}$$

The K⁺ current: bringing the threads together

K⁺ current (with kinetic rate constants)

$$I_{K} = g_{K}(E_{K} - V_{m}) \tag{9}$$

$$g_{\mathcal{K}} = g_{\max}^{\mathcal{K}} n^4 \tag{10}$$

The K⁺ current: bringing the threads together

K⁺ current (with kinetic rate constants)

$$I_K = g_K (E_K - V_m) \tag{9}$$

$$g_{\mathcal{K}} = g_{max}^{\mathcal{K}} n^4 \tag{10}$$

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n \tag{11}$$

where α_n, β_n are functions of V_m ; $\alpha(V_m), \beta(V_m)$

The K⁺ current: bringing the threads together

K⁺ current (voltage clamp based formulation)

$$I_{\mathcal{K}}=g_{\mathcal{K}}(E_{\mathcal{K}}-V_m)$$

$$g_K = g_{max}^K n^2$$

The K⁺ current: bringing the threads together

K⁺ current (voltage clamp based formulation)

$$I_{\mathcal{K}} = g_{\mathcal{K}}(E_{\mathcal{K}} - V_m)$$

$$g_K = g_{max}^K n^4$$

$$\frac{n}{t} = \frac{n_{\infty} - n}{\tau_n} \tag{12}$$

where n_{∞}, τ_n are functions of V_m ; $n_{\infty}(V_m), \tau_n(V_m)$

d d

The K⁺ current: bringing the threads together

Relationship between two formulations

$$n_{\infty} = \frac{\alpha_n}{\alpha_n + \beta_n} \tag{13}$$

$$\tau_n = \frac{1}{\alpha_n + \beta_n} \tag{14}$$

The K⁺ current: bringing the threads together

Relationship between two formulations $n_{\infty} = \frac{\alpha_n}{\alpha_n + \beta_n}$ (13) $\tau_n = \frac{1}{\alpha_n + \beta_n}$ (14)or solving for α_n, β_n $\alpha_n = \frac{n_\infty}{\tau_n}$ (15) $\beta_n = \frac{1 - n_\infty}{\tau_n}$ (16)

Outline

2 K⁺ gate dynamics under voltage clamp

3 Functional forms for the gating variables

4 The K⁺ current - a summary

5 The Na⁺ current

Gating particle dynamics The Na⁺ current: review

 Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate *m*, and inactivation gate *h*

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate *m*, and inactivation gate *h*
- Both gates have to be open

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate *m*, and inactivation gate *h*
- Both gates have to be open
- P(m-open) = m³ (it turns out you need 3 'm-particles' bound simultaneously)

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate *m*, and inactivation gate *h*
- Both gates have to be open
- P(m-open) = m³ (it turns out you need 3 'm-particles' bound simultaneously)
- P(h-open) = h (single inactivation gating 'particle')

- Na⁺ current is an *inactivating* current: it activates on depolarisation but also inactivates (is 'shut down') after a delay
- In order to accommodate the activation and inactivation processes, we need two kinds of 'gating particle', separately controlling the activation gate *m*, and inactivation gate *h*
- Both gates have to be open
- P(m-open) = m³ (it turns out you need 3 'm-particles' bound simultaneously)
- P(h-open) = h (single inactivation gating 'particle')
- $P(\text{gate-open}) = P(\text{m-open})P(\text{h-open}) = m^3h$

Gating particle dynamics

• Let g_{Na} be the conductance of the Na⁺ current

- Let g_{Na} be the conductance of the Na⁺ current
- Let g_{max}^{Na} be the conductance if all channels were open

$$g_{Na} = g_{max}^{Na} P(\text{gate-open}) = g_{max}^{Na} m^3 h$$

Gating particle dynamics The Na⁺ current

- Let g_{Na} be the conductance of the Na⁺ current
- Let g_{max}^{Na} be the conductance if all channels were open

$$g_{Na} = g_{max}^{Na} P(ext{gate-open}) = g_{max}^{Na} m^3 h$$

Both *m* and *h* gates may be treated in the same way as the *n* gate for K⁺

The Na⁺ current activation gate

• The steady state activation $m_{\infty}(V_m)$ and its time constant $\tau_m(V_m)$

The Na⁺ current activation gate

- The steady state activation $m_{\infty}(V_m)$ and its time constant $\tau_m(V_m)$
- Note $\tau_m \ll \tau_n$ so that Na⁺ activates much more quickly than K⁺ (as required)

The Na⁺ current inactivation gate

• The steady state inactivation $h_{\infty}(V_m)$ and its time constant $\tau_h(V_m)$

The Na⁺ current inactivation gate

- The steady state inactivation $h_{\infty}(V_m)$ and its time constant $\tau_h(V_m)$
- Note that h_∞ declines with depolarisation which is how we would expect an inactivation gate to work (review qualitative description at start of lecture)

The Na⁺ current inactivation gate

- The steady state inactivation $h_{\infty}(V_m)$ and its time constant $\tau_h(V_m)$
- Note that h_∞ declines with depolarisation which is how we would expect an inactivation gate to work (review qualitative description at start of lecture)
 - $\tau_h \gg \tau_m$ so that inactivation takes place *after* activation

The Na⁺ current: bringing the threads together

Na⁺ current (with kinetic rate constants)

$$I_{Na} = g_{Na}(E_{Na} - V_m) \tag{17}$$

The Na⁺ current: bringing the threads together

Na⁺ current (with kinetic rate constants)

$$I_{Na} = g_{Na}(E_{Na} - V_m) \tag{17}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{18}$$

The Na⁺ current: bringing the threads together

Na⁺ current (with kinetic rate constants)

$$I_{Na} = g_{Na}(E_{Na} - V_m) \tag{17}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{18}$$

$$\frac{dm}{dt} = \alpha_m (1-m) - \beta_m m \qquad \frac{dh}{dt} = \alpha_h (1-h) - \beta_h h \qquad (19)$$

where $\alpha_m, \beta_m, \alpha_h, \beta_h$ are functions of V_m

The Na⁺ current: bringing the threads together

Na⁺ current (voltage clamp based formulation)

$$I_{Na} = g_{Na}(V_m - E_{Na}) \tag{20}$$

The Na⁺ current: bringing the threads together

Na⁺ current (voltage clamp based formulation)

$$I_{Na} = g_{Na}(V_m - E_{Na}) \tag{20}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{21}$$

The Na⁺ current: bringing the threads together

Na⁺ current (voltage clamp based formulation)

$$I_{Na} = g_{Na}(V_m - E_{Na}) \tag{20}$$

$$g_{Na} = g_{max}^{Na} m^3 h \tag{21}$$

$$\frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_m} \qquad \frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_h}$$
(22)

where $m_{\infty}, h_{\infty}, \tau_m, \tau_h$ are functions of V_m

The Na⁺ current: bringing the threads together

Relationship between two formulations

$$m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m} \qquad h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}$$
(23)
$$\tau_m = \frac{1}{\alpha_m + \beta_m} \qquad \tau_h = \frac{1}{\alpha_h + \beta_h}$$
(24)

The Na⁺ current: bringing the threads together

Relationship between two formulations

$$m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m} \qquad h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}$$
(23)
$$\tau_m = \frac{1}{\alpha_m + \beta_m} \qquad \tau_h = \frac{1}{\alpha_h + \beta_h}$$
(24)

or solving for α,β

$$\alpha_m = \frac{m_\infty}{\tau_m} \qquad \alpha_h = \frac{h_\infty}{\tau_h}$$
(25)
$$\beta_m = \frac{1 - m_\infty}{\tau_m} \qquad \beta_h = \frac{1 - h_\infty}{\tau_h}$$
(26)

Determining K⁺-current gate parameters under voltage clamp Einding C

- Finding *G_{max}*
- Finding *p*
- Finding remaining parameters

Experimental methods - why do we need to know them?

• While computational neuroscience is clearly a theoretical area, it is intimately bound up with experimental practice because we need data for constraints

Experimental methods - why do we need to know them?

- While computational neuroscience is clearly a theoretical area, it is intimately bound up with experimental practice because we need data for constraints
- Understanding experimental methods allows us to know the origins of data and how to interpret them
Voltage Clamp

 Measure the membrane potential V_m in normal way (compare internal potential with the extracellular potential)

Voltage Clamp

• Compare V_m with the clamp voltage V_c ...

Voltage Clamp

• ... and use the difference to drive a current source *I*

Voltage Clamp

- ... and use the difference to drive a current source *I*
- In this way the current supplied, *I_{clamp}*, is exactly equal and opposite to that due to the ion flux across the membrane, *I_{ion}*

$$I_{clamp} = -I_{ion}$$

Voltage Clamp An example in simulation

- Model with AP generating K⁺ and Na⁺ currents currents used as 'virtual data'
- V_c = 0, and total clamp current I_{clamp} is shown
- It is conventional in physiology papers to show this rather than *I*_{ion}

Voltage Clamp Dissecting currents

- By poisoning current-specific channels, we can dissect out individual currents
- Note clamp currents are again shown (e.g. I_K is negative, but the I_{clamp} required is positive)

Finding *G_{max}* Finding *p* Finding remaining parameters

Outline

Determining K⁺-current gate parameters under voltage clamp

- Finding *G_{max}*
- Finding *p*
- Finding remaining parameters

Finding *G_{max}* Finding *p* Finding remaining parameters

Outline

Determining K⁺-current gate parameters under voltage clamp Finding G_{max}

- Finding *p*
- Finding remaining parameters

Finding G_{max} Finding p Finding remaining parameters

Finding g_{max}

- Can measure conductance *g_K* using
 - $g_K = I_K / (V_m E_K)$
 - since $V_m = V_c$, and we know I_K and E_K

Finding G_{max} Finding p Finding remaining parameters

Finding g_{max}

- Can measure conductance *g_K* using
 - $g_K = I_K / (V_m E_K)$
 - since $V_m = V_c$, and we know I_K and E_K
- Also, $g_K = g_{max}^K n^q$, with $0 \le n \le 1$

Finding G_{max} Finding p Finding remaining parameters

Finding *g_{max}*

• Conductance at equilibrium $g_{\infty}^{K}(V_{c})$ is

$$g_{\infty}^{K}(V_{c}) = g_{max}^{K} n_{\infty}^{p}(V_{c})$$

Finding G_{max} Finding p Finding remaining parameters

Finding g_{max}

• Conductance at equilibrium $g_{\infty}^{K}(V_{c})$ is

$$g_{\infty}^{K}(V_{c}) = g_{max}^{K} n_{\infty}^{p}(V_{c})$$

• As V_c increases, it appears that $g_{\infty}^{K}(V_c)$ increases and is reaching its limiting value g_{max}^{K} with $n_{\infty}^{p}(V_c) = 1$

Finding G_{max} Finding p Finding remaining parameters

Finding g_{max}

• Conductance at equilibrium $g_{\infty}^{K}(V_{c})$ is

 $g_{\infty}^{K}(V_{c}) = g_{max}^{K} n_{\infty}^{p}(V_{c})$

• As V_c increases, it appears that $g_{\infty}^{K}(V_c)$ increases and is reaching its limiting value g_{max}^{K} with $n_{\infty}^{p}(V_c) = 1$

• So, with sufficiently large V_c

$$\mathsf{g}_{\infty}^{K}(V_{c})pprox \mathsf{g}_{max}^{K}$$

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Outline

Determining K⁺-current gate parameters under voltage clamp
 Finding G_{max}

- Finding p
- Finding remaining parameters

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p*

• The following phase of analysis occurs for fixed V_c

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p*

- The following phase of analysis occurs for fixed V_c
- The (virtual cell) data points are for the normalised conductance n^p(t)

$$n^p(t) = rac{g^K(t)}{g^K_{max}}$$

which lies between 0 and 1 (typically, $g^K_{max} \ll 1$)

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p* Fitting the data

• Let p^* be an estimate of p; calculate the corresponding estimate n^*_{∞} of n_{∞}

$$n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{p^*}}$$

 $p^*=1 \text{ and } n^*_\infty=n^p_\infty=0.656$

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p* Fitting the data

• Let p^* be an estimate of p; calculate the corresponding estimate n^*_{∞} of n_{∞}

$$n_{\infty}^* = (n_{\infty}^p)^{rac{1}{p^*}}$$

Using n^{*}_∞ in the solution in
 (8) for n(t), vary τ_n for the best fit to the data
 (automatically or by hand)

$$p^*=1$$
 and $n^*_\infty=n^p_\infty=0.656$

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p* Fitting the data

$$p^*=1$$
 and $n^*_\infty=n^p_\infty=0.656$

• Let p^* be an estimate of p; calculate the corresponding estimate n^*_{∞} of n_{∞}

$$n_{\infty}^* = (n_{\infty}^p)^{\frac{1}{p^*}}$$

- Using n^{*}_∞ in the solution in
 (8) for n(t), vary τ_n for the best fit to the data
 (automatically or by hand)
- The blue line is the best fit for $p^* = 1$

Finding p

Finding p Fitting the data

$$p^*=2$$
 and $n^*_\infty=(n^p_\infty)^{1\over 2}=0.81$

$$p^*=3$$
 and $n^*_{\infty}=(n^p_{\infty})^{rac{1}{3}}=0.869$

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p*

• p = 4 gives a good fit ...

 $p^*=4$ and $n^*_\infty=n^p_\infty=0.9$

Finding *G_{max}* **Finding** *p* Finding remaining parameters

Finding *p* Fitting the data

- p = 4 gives a good fit ...
- In fact it's an exact fit because it was used to derive the 'data'!

 $p^*=4$ and $n^*_\infty=n^p_\infty=0.9$

Finding G_{max} Finding p Finding remaining parameters

Outline

Determining K⁺-current gate parameters under voltage clamp

- Finding *G_{max}*
- Finding *p*
- Finding remaining parameters

Finding G_{max} Finding p Finding remaining parameters

Finding $n_{\infty}(V_c)$

• Armed with g_{max}^{K} and p we can now find $n_{\infty}(V_{c})$

$$n_{\infty}(V_c) = \left[\frac{g_{\infty}^{K}(V_c)}{g_{max}^{K}}\right]^{\frac{1}{p}}$$

Finding G_{max} Finding p Finding remaining parameters

Finding $n_{\infty}(V_c)$

• Armed with g_{max}^{K} and p we can now find $n_{\infty}(V_{c})$

$$n_{\infty}(V_c) = \left[\frac{g_{\infty}^{K}(V_c)}{g_{max}^{K}}\right]^{\frac{1}{p}}$$

• Then find $\tau_n(V_c)$ by fitting n(t) at each V_c (described by (8)) to the corresponding data

Finding G_{max} Finding p Finding remaining parameters

Finding $n_{\infty}(V_c)$

• Armed with g_{max}^{K} and p we can now find $n_{\infty}(V_{c})$

$$n_{\infty}(V_c) = \left[\frac{g_{\infty}^{K}(V_c)}{g_{max}^{K}}\right]^{\frac{1}{p}}$$

- Then find $\tau_n(V_c)$ by fitting n(t) at each V_c (described by (8)) to the corresponding data
- Finding parameters for the Na⁺ current requires more complex voltage clamp protocols...

Interpretation Neural excitability and neural computation

Augmenting the formalism

Modelling the 'zoo' of ion-channels is potentially tractable

 Most K⁺, Na⁺ voltage gated currents can be described using the formalism developed here

Modelling the 'zoo' of ion-channels is potentially tractable

- Most K⁺, Na⁺ voltage gated currents can be described using the formalism developed here
- The diversity of K⁺ channels is illustrated in the figure (determined using genetic and proteomic techniques). These are, all in principle, amenable to the HH formalism. (Same applies to Na⁺ channels)

9 Neural excitability and neural computation

Augmenting the formalism

Active currents allow a wide diversity of behaviour Mechanism for neural computation

• The diversity of active currents supports a corresponding diversity of neural behaviours

Active currents allow a wide diversity of behaviour Mechanism for neural computation

- The diversity of active currents supports a corresponding diversity of neural behaviours
- These behaviours supply the building blocks or mechanisms on which neural computation is founded

Neural excitability Basic action potential generation with Na⁺, K⁺

Neural excitability Enhanced repolarisation - reduction of firing rate

 Ca^{2+} -activated K⁺ current, and high threshold Ca^{2+} current I_L

Neural excitability Delay to onset of firing - temporal filter

Transient K^+ current I_A

persistent K^+ current I_M
Neural excitability Firing rate accommodation or adaptation

Slow Ca²⁺-activated K⁺ current, I_{AHP}

Bursting when excited from hyperpolarisation but... Transient Ca^{2+} current I_T

No bursting when excited from resting potential Transient Ca²⁺ current I_T

Neural excitability and neural computation

• Basic form of HH-current

$$I(V_m, t) = g_{max}m(V_m, t)^P n(V_m, t)^Q (E_{rev} - V_m)$$

showing dependence of variables on V_m and t

Basic form of HH-current

$$I(V_m, t) = g_{max}m(V_m, t)^P n(V_m, t)^Q (E_{rev} - V_m)$$

showing dependence of variables on V_m and t

• Ca^{2+} -currents require an extension of the formalism where the driving force $(E_{rev} - V_m)$ is replaced by a more complex voltage dependent term, and there may be additional gating variables dependent on $[Ca^{2+}]_{in}$, as well as those dependent on V_m and t

HH formalism augmented Synaptic input and morphology

• Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism

HH formalism augmented Synaptic input and morphology

- Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism
- Everything we have done so far assumes a uniform membrane potential over the entire neural surface; clearly wrong neurons have complex morphologies with spatially varying V_m

HH formalism augmented Synaptic input and morphology

- Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism
- Everything we have done so far assumes a uniform membrane potential over the entire neural surface; clearly wrong neurons have complex morphologies with spatially varying V_m
- Dividing the membrane into smaller iso-potential *compartments* overcomes this problem

HH formalism augmented Synaptic input and morphology

- Synaptic input can be framed (phenomenologically) in a conductance based framework allowing incorporation in the HH formalism
- Everything we have done so far assumes a uniform membrane potential over the entire neural surface; clearly wrong neurons have complex morphologies with spatially varying V_m
- Dividing the membrane into smaller iso-potential *compartments* overcomes this problem
- Both issues dealt with next time...

• There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)

Summary

- There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)
- This alternative is based on the voltage clamp technique

Summary

- There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)
- This alternative is based on the voltage clamp technique
- Carefully constructed experiments are required to determine n_{∞}, τ_n

Summary

- There is an alternative formulation of the Hodgkin Huxley equations in terms of variables (n_{∞}, τ_n) more amenable to experimental determination (than their rate-kinetic counterparts α, β)
- This alternative is based on the voltage clamp technique
- Carefully constructed experiments are required to determine n_{∞}, τ_n
- The HH formalism is extremely powerful, and can be extended to accommodate most channels, synaptic input and morphology

References and further reading

Reread references given in the last lecture (which will have incorporated the voltage clamp formalism into their descriptions)