
Mathematics for Computational Neuroscience &
Imaging

John Porrill

Contents

Part 1. Case Studies 5

Chapter 1. Ordinary Differential Equations 7
1. A First Order System 7
1.1. Setting up the Mathematical Model 8
1.2. Using Black-Box ODE Routines 16

Chapter 2. Linear Algebra 19
1. Example: An Idealised Linear Neuron 19
1.1. Vectors 20
1.2. Arithmetic Operations 20
1.3. Vectors in n-Dimensional Space 21
1.4. Geometry of the Linear Neuron 23
2. Matrices 23
2.1. Matrix Transposition 24
2.2. Matrix Arithmetic Operations 25
2.3. Matrix Multiplication 25
3. Matrix Inverses and Solving Linear Equations 28
4. Least Squares Approximation 30
4.1. Additive Noise 30

Part 2. Reference 33

Chapter 3. Numbers and Sets 35
1. Set Theory 35
2. Number Systems 36

Chapter 4. Notation 39
1. Subscripts, Superscripts, Sums and Products 39

Chapter 5. Functions 41
1. Functions in Applications 41
2. Functions as Formulae 41
3. Functions as Mappings 41
4. Linear and Affine Functions of One Variable 42
5. Piecewise Specification of Functions 43
6. Linear and Affine Functions of Two Variables 44
7. The Affine Neuron 45
8. Non-Linearity and Linearisation 45
9. Using Sketches and Diagrams 45

Chapter 6. Calculus 47
1. Differentiation 47
1.1. Rates of Change 47
1.2. Taylor Series to First Order 48

3

4 CONTENTS

2. Integration 48

Chapter 7. Special Functions 49
1. The Straight Line 49
2. The Quadratic 49
3. The Exponential Function 50
4. The Logarithmic Function 51
5. Basic Trigonometric Functions 51
6. Basic Hyperbolic Functions 51

Part 3. MatLab 53

Chapter 8. MatLab: a Quick Tutorial 55
1. Entering Commands and Correcting Errors 55
2. MatLab as a Desk Calculator 56
3. Variables 57
4. Punctuating MatLab 57
5. Row Vectors in MatLab 58
5.1. Making Row Vectors 59
6. Plotting Graphs Using MatLab 60
7. Script M-Files 62
8. The MatLab for-Loop 63
9. MatLab Functions 64
Exercises 64
10. More Maths and MatLab 66
11. Function M-Files 66
12. Elementwise Functions 67
13. The MatLab if Statement 68
14. One-to-one Functions and their Inverses 69
15. Matrices in MatLab 69
16. Functions of Two Variables 70
17. Visualising Functions of Two Variables 70

Part 1

Case Studies

CHAPTER 1

Ordinary Differential Equations

Science is a differential equation. Religion is a boundary condi-
tion. Alan Turing.

The theory of differential equations has been one of the most fertile areas in
pure mathematics and much of modern mathematics was invented to serve its
needs. Our current understanding of the physical world is crucially dependent on
differential equations. For example in dynamical systems, that is, systems which
change over time, experimental investigation allows us to relate the rate of change
to measurable internal and external influences. This process inevitably leads to
descriptions of dynamical system behaviour in terms of differential equations.

It is sometimes suggested that this approach, so successful in physics and en-
gineering, is destined to fail when applied to the life sciences. That nothing could
be further from the truth is evidenced in neuroscience by the astonishing success
of Hodgkin & Huxley’s model of neuronal spiking. In fact is reasonable to predict
that courses in ’Neuroscience without Calculus’ will soon be regarded as just as in-
adequate a preparation for research in theoretical neuroscience as ’Physics without
Calculus’ courses are for research in theoretical physics.

We will begin our investigation of differential equations by investigating a first
order equation which describes growth and decay processes. It illustrates a surpris-
ing range of features characteristic of dynamical systems in general. We will then
tackle a second order equation which is capable of describing oscillatory processes.
It has important practical applications and great theoretical importance since it
describes the small-oscillation modes of general dynamical systems.

1. A First Order System

An important class of growth and decay processes, for example

• population growth processes (e.g. growth of bacterial populations in nu-
trient media)

• motion of a body in a highly-viscous medium (e.g. rotations of the eye
surrounded by orbital tissue)

• charge leakage through an inductor and a resistor in series (e.g. flow of
ions through the neural membrane)

are well-described by a very simple differential equation called the leaky integrator
equation.

Rather than use one of the above physical systems as our concrete concrete
example of a leaky integrator we will tackle the problem of filling a leaky bath with
water when the plug has been left out. This choice illustrates a wonderful feature
of mathematical modelling. Once we have established that a new, and possibly
mysterious, system (for example current flow through the neural membrane) is
described by the same mathematical model as a simpler system for which our
intuitions are more reliable (here the problem of filling a leaky bath) we can explain
the properties of the first system by analogy with those of the second.

7

8 1. ORDINARY DIFFERENTIAL EQUATIONS

1.1. Setting up the Mathematical Model. The first and most important
stage in mathematical modelling is the translation of the problem into mathemati-
cal language. If you get this stage right all your deductive steps from this point on
(assuming that you are a good mathematician and work carefully) will at least be
very reliable and in principle can be provably true. Any doubt about your conclu-
sions must be justified by pointing out errors in your modelling assumptions. The
existence of this bottleneck stage is a major advantage of mathematical modelling.
Rational argument is possible if (and in my experience, only if) a acientist makes
their assumptions completely explicit in this way.

Unfortunately getting this stage right requires well-established prior knowledge
of basic principles supplemented by accurate data. The satisfaction of these two
requirements is why physics works so well. Claims by life scientists that it can’t
work for them are presumably based on the absence of such principles and data in
their research area. If so I’m buggered if I know a) why they aren’t ashamed, b)
why they don’t put it right, and c) how they can possibly get around the problem
without first feeling (a) then getting on with (b).

Let’s start modelling and try to note any questionable assumptions we make.
Let V (t) be the volume of water (units litres) in the bath at time t (units seconds).
The state variable V (t) completely describes the current state of the physical system
in a sense to be precisely defined later.

By turning the tap (let’s have just one tap) we can adjust the volume of the
water flowing into the bath. Call this rate of flow u(t) (units litres per second).

(1) flow in = u(t)

Since u(t) can be used to adjust the value of the state variable V (t) it is called a
control variable.

We need a model for the leakage of water through the plug-hole but the physical
process involved here are not as simple as they might seem. A convenient approxi-
mation is that the rate of flow is proportional to the pressure difference across the
plug hole. If we assume that the bath has a flat bottom (containing the plug) and
vertical sides, then this pressure difference is proportional to the depth of water in
the bath and the depth of water is itself proportional to the volume of water in the
bath.

Putting all that together gives

flow out ∝ pressure ∝ depth ∝ volume

and we can express this flow rate as

(2) flow out = kV (t)

where the constant of proportionality k is a constant scalar parameter. Under
normal circumstances this constant will be positive, k ≥ 0, that is water flows out,
not in, through the plug-hole.

The coefficient k is an example of a lumped parameter. It could in priciple be recovered
from more fundamental parameters of the physical system such as the area of the bath, the
area of the plug hole, the density and viscosity of water, etc. although in practice it would
be easier to determine it experimentally as a phenomenological parameter, for example
by putting a known amount of water in the bath and measuring the volume that escapes
through the plug in a given short (why short?) time. It is best to be honest about the dif-
ference between lumped/phenomenological parameters and more fundamental parameters.
For example channel conductances are in principle open to direct measurement, but this is
tedious work, so they are usually measured indirectly using the input-output characteris-
tics of the neuron. This is best thought of as a measurement of a lumped parameter of the
input-output system which can be tentatively identified with a fundamental parameter of
the physical system.

1. A FIRST ORDER SYSTEM 9

We can now evaluate the rate of change of volume of water in the bath as
dV

dt
= flow in− flow out = u(t)− kV (t).

This equation summarises the information we have about the evolution of a system
and is called the equation of motion or state equation for the system.

We will often re-order expressions like this to try to emphasise their content.
For example we might emphasise the fact that the term u(t) is the exogeneous input
driving the system by putting it last

(3)
dV

dt
= −kV (t) + u(t)

temporarily over-riding the decency rule that minus signs shouldn’t be left exposed.
Alternatively to emphasise that this is an equation specifying V in terms of u we
can put all the unknown terms on the LHS

(4)
dV

dt
+ kV (t) = u(t).

When presenting a complex equation this kind of notational triviality can help the
reader a lot. We will also occasionally denote time derivatives by dots, V̇ +kV (t) =
u(t), especially for in-line equations.

A system whose state equation has the form above (with k > 0) is called a
leaky integrator (this name is justified in the next section). This simple equation
illustrates a lot more useful terminology:

• the independent variable is time t so the equation describes a dynamical
system

• it involves a derivative of the state variable V so it is a differential equation
• no non-linear terms (such as V 2, sin(u) or uV) are present so it is a linear

equation
• there are derivatives with respect to only one variable, time t, so it is an

ordinary differential equation (or ODE)
• the highest derivative present is the first derivative V̇ so it is a first-order

equation
• the coefficients multiplying the unknown V and V̇ (k and 1 respectively)

are constant so the equation has constant coefficients.
Now we can say a long sentence in fluent maths: the leaky integrator is a dynamical
system described by a first-order linear ODE with constant coefficients. If you
can reduce a modelling problem to an equation of this type without too much
cheating you can feel very pleased with yourself. They have been well-studied and
are particularly easy to solve.

1.1.1. The Exact Integrator. Now let’s look at a special case. Suppose the bath
plug is in place, so that k = 0, then the rate of change volume is simply the amount
of water flowing into the bath. In mathematical terms this becomes

(5)
dV

dt
= u(t).

This equation says that u(t) is the derivative of V (t) and so, by the Fundamental
Theorem of Calculus, V (t) is given by the integral of u(t)

(6) V (t) =
∫

u(t)dt.

Hence this very simple dynamical system integrates its input, this is a very useful
facility to have available. For example most models of the oculumotor system
require at least one integrator in the processing pathway. In the more general case
where k > 0 the integrator has a leak, hence the name leaky integrator. Leaky

10 1. ORDINARY DIFFERENTIAL EQUATIONS

integrators are often used as neural approximations to true integrators since they
are much easier to build from biological components.

You may remember from elementary calculus that the indefinite integral above
(indefinite because no limits of integration are specified) is defined only up to an
arbitrary constant of integration

(7) V (t) =
∫

u(t)dt + c.

Arbitrary constants of integration are characteristic of solutions of differential
equations and it is essential to understand why they occur. Suppose we turn on the
tap at time 0. Then the amount of water in the bath at time t is the amount V0

originally in the bath plus the total amount that flows in between the initial time
0 and the final time t (given by a definite integral)

(8) V (t) = V0 +
∫ t

0

u(τ)dτ

Clearly the constant of integration c is needed to allow for the different possible
values of V0. Choosing a value for the initial state V (0) = V0 is called a choice of
initial conditions for the differential equation.

You might have been tempted to write the equation above as

V (t) = V0 +

∫ t

0
u(t)dt.

but mathematicians frown on the use of t as both the upper limit of an integral and as
the dummy variable of integration (specified by dt). To avoid this I have introduced a
new integration variable τ (the Greek letter tau; it rhymes with cow). If you wish you can
ignore such subtleties but you may find out that the one social skill mathematicians have
mastered is the supercilious sneer.

When a solution can be written as a simple formula (what simple means here
is not quite well-defined) we often say we have it has an analytic solution. Here
there is still a (possibly difficult) integral to do so we say that we have an analytic
solution up to a quadrature (quadrature is the old name for finding the area under
a curve).

Analytic solutions to physically important problems are rare but very important
when they exist. They often allow us to find simple, informative formulae for
quantities of interest. As an example we will tackle the following very simple
problem.

Suppose the tap is turned on fully so that u(t) = umax. How
long before the bath is full (V (t) = Vmax)?

Substituting for u(t) in the equation above gives

(9) V (t) = V0 +
∫ t

0

umaxdτ = V0 + [umaxτ]t0 = V0 + umaxt.

Savour this moment: it is a rare event. We have found a closed form solution to
a differential equation (a closed form expression is one that can be evaluated by a
finite, well-defined, sequence of operations).

From this formula we see that the bath will be full (V = Vmax) when

(10) V0 + umaxt = Vmax

that is, when

(11) t = tfull =
Vmax − V0

umax
.

Of course this is a trivial problem and the solution should have been obvious: the
time required to fill a bath is given by the volume of water required, Vmax − V0,
divided by the constant flow rate, umax.

1. A FIRST ORDER SYSTEM 11

Don’t be disheartened. The best possible outcome of a modelling study is
that after much handle turning the modelling machine pops out an answer you can
actually explain to your colleagues! The only drawback is that you will want to
publish all the clever maths you used on the way rather than much more trivial
argument suggested by your simple result. If you can’t fight this temptation, worry
not, there are several (widely unread) journals which cater to your special needs.

If you need further justification for working through this problem in such detail
then you may like to know that the steps followed here are exactly those used to
solve the theshold crossing problem for the leaky integrator. In that case they
allow you to evaluate a very useful closed-form expression for the firing rate of an
integrate-and-fire neuron with constant injected current.

We can also use this problem to work on improving our mathematical per-
sonal hygiene. Suppose the solution wasn’t so obviously correct. How could you
check it without simply re-doing the calculation? A good first step is to perform a
dimensional analysis to be sure that the result has the right dimensions:

• the numerator (top of fraction) is a volume, measured in litres, the denom-
inator is a flow rate, measured in litres per second, the result is therefore
measured in seconds as it should be.

(This step would be easier if neuroscientists, or at least editors of neuroscience
journals, recognised that physical quantities do in fact have units, and that to
leave them unspecified is a crime against humanity which should make a paper
unpublishable). Another useful check is to look for special cases where the answer
is obvious:

• if the bath is already full, V0 = Vmax, the formula gives tfull = 0, so no
time is needed to fill a full bath.

If possible check that the solution has the right qualitative properties:
• since Vmax − V0 is in the numerator (top of the fraction) bigger baths

require longer fill times
• since umax is in the denominator (bottom of the fraction) higher flow rates

lead to shorter fill times .
Always check for features such as negative quantities, divisions by zero, square roots
of negative quantities etc., that might lead to physical absurdities:

• when V0 > Vmax the predicted time to fill the bath is negative, but this OK
since you are attempting to remove water from a bath that has overflowed
via the tap.

Good applied mathematicians, even those who are sloppy calculators, (they can be
identified by their catchphrase ‘correct up to minus signs and factors of two’) don’t
often make real howlers because they do such reality checks as a matter of course.

1.1.2. The Transient Solution. It is a geat temptation to try to solve a problem
all at once. The result is likely to be a long, uniformative formula, or, even worse
(and a much more likely outcome for the average investigator) a massive, mislead-
ingly precise, computer simulation. Often it is more useful to investigate many
special cases to identify behaviours we can expect to find in the general solution.

We have already looked at one special case, the exact integrator with k = 0. In
that case we simplified the problem by putting the plug in the bath. In this section
we will take out the plug but turn off the tap, setting the control input u(t) to zero.

A dynamical system of this kind, which evolves in time with no external inputs,
is called without exogenous inputs or more concisely an autonomous system. Setting
the control input to zero in the leaky integrator equation gives

(12)
dV

dt
+ kV (t) = 0.

12 1. ORDINARY DIFFERENTIAL EQUATIONS

The differential equation obtained by setting input terms to zero is often called the
homogeneous equation. We will look its solution using a range of methods.

1.1.3. Analytic Solution of the Homogeneous Equation. This equation can be
solved by inspection to give

(13) V = Ae−kt.

This is the kind of statement non-mathematicians hate. It means that you are being
expected either a) to know the solution from previous courses or b) to be able guess a
solution a solution using your skill and judgement. For example here we need a function
whose derivative is very closely related to itself, this points to an exponential function,
possibly V = et, but we need an extra factor of −k in the derivative, so (think chain

rule) we make the exponential a function of −kt, V = e−kt, then we use the fact that
any multiple of the solution is also a solution (since the equation is linear in V) to get

V = Ae−kt. Finally we must check that this solution is correct

(14)
dV

dt
=

dAe−kt

dt
=

(
dAex

dx
·

dx

dt

)
x=−kt

= (Ae
x
) · (−k) = −k(Ae

−kt
). = −kV

With just a little practice all the steps in this equation will simply happen in your head.

The formula above gives a solution of the equation for any value of A. It is in
fact the general solution of the equation, that is, by varying the arbitrary constant
A we get all possible solutions. We can choose the arbitary constant A to satisfy
the initial conditions. For example if V (0) = V0 then

(15) V0 = V (0) = Ae−k·0 = Ae0 = A · 1 = A

determines the value of A and so

(16) V = V0e
−kt.

This example is typical: the general solution of a first-order ODE has just one
arbitrary constant which can be fixed by imposing a single initial condition.

At this stage it is important ot either sketch the graph of your solution or let
MatLab do it for you:

V0 = 50; % initial condition

k = 0.1; % rate constant

t = linspace(0, 120, 100); % 2min, 100 timesteps

V = V0*exp(-k*t);

figure; plot(t, V)

Figure 1 Plot of analytic solution of the leaky integrator with V0 = 0.9 and k = 0.1.

This is the characteristic shape of an exponential decay curve. This is what the
solution does if it has been prepared in some initial state (specified by the initial
conditions) and we leave it to evolve without external infuences. This behaviour is

1. A FIRST ORDER SYSTEM 13

called the transient behaviour of the system. In this example the transient response
is clearly stable, that is, it decays to zero.

When inspection or inspired guesswork fails to solve your equation there are a
numbber of systematic procedures that you can try. Alternatively symbolic math-
ematics programs like Mathematica and Maple can (in principle) solve all ODE’s
which have closed form solutions in terms of of a usual set of special functions. It
is only fair to admit that ODEs with closed form solutions are rare (in fact there
is usually a deep reason why they exist). Hence in genral we have to turn to other
methods, both quantitative and qualitative.

1.1.4. The Characteristic Time. Some qualitative properties of dynamical sys-
tems can be recovered without any attempt to solve the equation of motion. Di-
mensional analysis is often a good source for such properties. For example let’s
look at the rate coefficient k. Since V̇ can be added to kV these quantities must
have the same dimensions, this allows us to calculate the dimensions of k

(17) [k] =
[V̇]
[V]

=
litre sec−1

litre
= sec−1

so k is an inverse time. Its reciprocal

(18) T =
1
k

must have dimensions of time and is therefore a characteristic time for the system,
called the time constant of the leaky integrator.

It is clear from the analytic solution that over the characteristic time T the
state variable decays by a factor of about e−1

(19) V (T) = V0e
−k· 1k = e−1 =

1
2.718 . . .

V0.

Somtimes it is more convenient to quote the half-life for a decay process, that is, the
time T0.5 taken to decay to half the initial value. From V (T0.5) = 1

2V0 we deduce
that

(20) e−kT0.5 =
1
2
⇒ −kT0.5 = log(

1
2
) ⇒ T0.5 = −

log(1
2)

k
= 0.693 . . . T

that is, the half life is approximately 70% of the time constant.
1.1.5. Graphical Solution. In this section we will try to forget that we have

the analytic solution and look for further qualitative insight available in the state
equation. The essentially graphical method described below is very powerful and
has much deeper implications than appear at first sight.

As we saw in the last section the graph of a solution V (t) of the equation is
a curve in the plane with coordinates (t, V). What information about this curve
does the state equation contain? Clearly the differential equation tells us that if
the curve goes through the point (t, V) it has slope V̇ = −kV there.

This information can be illustrated graphically by placing a grid on the (t, V)
plane and at each grid point drawing an arrow or flow vector with slope specified
by the differential equation. Such a diagram is called a flow field for the differential
equation. A rough sketch of the flow field can often be obtained by hand, more
accurate plots such as Figure 2 can be obtained using MatLab:

t = linspace(-0.2, 2, 20);

V = linspace(-1, 1, 20);

[t, V] = meshgrid(t, V); % 20x20 grid

k = 2;

ft = ones(size(t)); % flow t-cmpnt = 1

fV = -k*V; % flow V-cmpnt = slope

14 1. ORDINARY DIFFERENTIAL EQUATIONS

figure; quiver(t, V, ft, fV);

(in this code each flow vector is given t-component equal to 1 so that its V compo-
nent is just the required slope V̇ = −kV . MatLab then scales all the arrows equally
so they fit the grid-spacing nicely).

Figure 2 Flow field for the leaky integrator U̇ + 1
2U = 0.

A solution to the differential equation specifies a curve whose slope matches the
direction of this flow field at every point. Such a curve is called an integral curve of
the flow. It is helpful to visualise this flow field as the motion of an imaginary fluid
whose velocity at each point is given by the flow vector. An integral curve then
corresponds to the path of a small particle moving with the fluid (so that integral
curves are often called stream lines).

Integral curves can be obtained graphically by drawing a smooth curve every-
where tangential to the flow field. Obviously there is a continuous family of such
integral curves. A unique curve can be specified by choosing a starting point (spec-
ified by the initial conditions) and each streamline corresponds to a different choice
of initial conditions. Specifying the initial condition U(0) = U0 is equivalent to
specifying the starting point(0, U0) on the t = 0 axis for the stream line.

In Figure 3 a stream line is overlayed on the flow field of Figure 2 using the
MatLab utility streamline

t0 = 0; V0 = 0.9; % starting point

streamline(t, V, ft, fV, t0, V0);

Figure 3 Streamline with initial conditions U0 = 0.9 superposed on flow field from
Figure 2

1. A FIRST ORDER SYSTEM 15

The flow field discussed here is slightly more general than the phase portrait to be defined
later. In fact it is the phase portrait for the augmented system

dV

dτ
= −kV (τ)(21)

dt

dτ
= 1(22)

in which time is added as an extra dependent variable. This is a trivial but surprisingly
powerful trick which turns up repeatedly in control theory.

1.1.6. Numerical Solution. The flow field picture defined above is a nice way
to visualise how numerical solution methods work. If we choose a starting point
then the flow field at that point tells us the initial direction of the streamline.
Moving a small distance in this direction gives a new point on the streamline; we
can compute the flow vector at this new point to make a further step alog the
streamline. Iterating this procedure allows us to plot the whole streamline. Clearly
this is an approximation since the method approximates the actual stream line
by a series of short line segments but for small enough steps it will be a good
approximation.

The Euler method for solving first order ODEs implements this procedure.
First we must choose a small time step ∆t. We will attempt to evaluate V (t) only
at the times t = 0,∆t, 2∆t, 3∆t, . . . that is at

(23) ti = i∆t i = 0, 1, 2, . . .

to give the discrete approximation

(24) Vi ≈ V (ti) i = 0, 1, 2, . . .

Approximating the streamline by a tangential straight line with the same slope is
equivalent to using the first order Taylor approximation

(25) V (t + ∆t) ≈ V (t) +
dV

dt
∆t = V (t)− kV (t)∆t

where the derivative is specified by the differential equation V̇ = −kV . Applying
this rule iteratively starting at t = 0 gives a recurrence relation

(26) Vi+1 = Vi − kVi∆t

which allows us to write very simple code fo obtain an approximate solution with
given initial conditions

k = 0.5;

nt = 200; dt = 0.01; t = (0:nt-1)*dt;

V(1) = 0.9;

for i = 1:nt

V(i+1) = V(i)-k*V(i)*dt;

end

figure; clf; plot(t, V)

to calculate and plot the Euler approximation to the solution with initial conditions
V0 = 0.9.

MatLab starts indexing its arrays at i = 1 while some other languages start at i = 0
or allow arbitrary starting points. It seem MatLab policy is to use i = 1 conventions
consistently in both documenting mathematical formula and code. I prefer to use the
(usually neater) i = 0 convention for maths, but then have to convert to i = 1 conventions
when writing MatLab code. This causes its fair share of programming errors. Note to
MatLab: implement variable starting index arrays.

The update rule above can be written as

Vi+1 = (1− k∆t)Vi.

16 1. ORDINARY DIFFERENTIAL EQUATIONS

which is a simple recurrence equation and can be solved by inspection:

Vi = (1− k∆t)iV0.

The Euler method gives the above geometric series rather than the exact exponen-
tial

(27) Vi = e−ik∆tV0 = (e−k∆t)iV0

so the decay constant at each step has been approximated as

(28) e−k∆t ≈ 1− k∆t.

whih is the first order Taylor approximation to the exponential function (ex ≈
1+x+ x2

2 + . . .). Since the errors ignored are quadratic or higher in ∆t, halving the
time step will reduce the approximation error at each individual step by a factor of
about 4. Because we now require twice as many steps to reach any given time the
approximation error at a given time is only reduced by a factor of 2. This so-called
linear convergence behaviour is illustrated in Figure 4. Linear convergence is not
very good and much better approximation schemes have been devised. Some of the
best are implemented in the black-box differential equation solvers supplied with
MatLab.

Figure 4 Solving V̇ + 2V = 0 using the Euler method. Top plot: The thick
blue curve is the true exponential solution, the green and red curves are the ap-
proximations using 10 and 20 time step respectively. Lower plot: Errors in these
two approximations. It can be seen that doubling the number of steps (equiva-
lently halving the discretisation time) approximately halves the error in the Euler
method.

It is important to note that the Euler scheme also has the potential for cat-
astrophic divergence. Despite these drawbacks it is a very useful approximation
scheme for many purposes.

1.2. Using Black-Box ODE Routines. By using better approximations
than line segments, for example segments of polynomial curves, and more intelli-
gent control architectures, algorithms with higher order convergence and improved
stability can be developed. These higher order schemes are usually accessed via
so-called black-box routines. Learning how to use these gives us a tool that can be
used to solve equations of almost arbitrary complexity.

Black-box routines solve ODEs of the general form

(29)
dy

dt
= f(t, y(t))

where the RHS can be an arbitrary function of time t and the state variable y.

1. A FIRST ORDER SYSTEM 17

In MatLab the user is required to provide code to evaluate the function on the
RHS which must be specified in the standard form

function ydot = func(t, y)

% code evaluating ydot

% goes here e.g.

ydot = -y^2+sin(y)^3+t*y

The equation can be solved over a given time interval using the black-box routine
ode23

[t, y] = ode23(@func, tspan, y0);

where the user passes the pointer @func to the function func, the time range over
which to solve the equation (as a 2-vector tspan=[t0 t1]) and the initial value y0
of the state variable. The routine returns a vector of times t in the range tspan
and a vector of associated function values y at those times.

Using these procedure we can solve the leaky integrator with given initial con-
ditions and plot the solution (see Figure 5 using the code below

function plot_lky

V0 = 0.9;

tspan = [0 2];

[t, V] = ode23(@lky, tspan, V0)

figure; plot(t, V)

function Vdot = lky(t, V)

Vdot = -2*V;

(making this a function rather than a script allows us to put it all in one file).

Figure 5 Solving V̇ + 2V = 0 using the black-box method ode23. Blue curve is
the true solution, green is the approximation. The maximum error is about 0.0005.
The error for the Euler method with the same number of function evaluations is
about 30 times larger.

It is very important not to get too blasé about the use of black-box numerical routines.
They are often slow, over-complex and bug-ridden. They usually have many default param-
eters set that must be adjusted by the user for optimum performance. It’s also important
to know how they work: for example a predictor-corrector method will give meaningless
results or be hopelessly inefficient for noisy inputs.

CHAPTER 2

Linear Algebra

Neo: What is the Matrix?
Trinity: The answer is out there, Neo, and it’s looking for you,
and it will find you if you want it to. The Matrix (1999)

1. Example: An Idealised Linear Neuron

A natural context to discuss the usefulness of linear algebra in neuroscience is
the linear neuron (this has a lot of diferent names depending on the application
area). It is a very simple one layer neural net with multiple inputs and just one
output.

To make the model concrete let’s imagine a neuron N taking input from n
sensory neurons. We will assume that the relevant measure of the input at the j-th
synapse on N is the firing rate xj of the pre-synaptic neuron.

I said we should be careful about units. Firing rates are usually measured as
number of spikes per second so that xj has dimensions sec−1 (some people, including
me, refer to firing rates in units of Hz (Hertz) but that’s not strictly correct because
Hz means cycles per second).

The input to the neuron is assumed to be completely described by the instan-
taneous firing rates x1, x2, . . . , xn of the input neurons. We also assume that the
output of the neuron is adequately decribed by its firing rate y. The linear neu-
ron, unlike the leaky integrator, has no internal state to remember the history of
its inputs (real neurons are not quite like this). Because of this simplification the
output firing rate y can only depend on the instantaneous inputs xi.

Clearly the firing rate is a positive quantity. However it is often firing modu-
lation, that is, changes relative to the tonic/spontaneous firing rate of the neuron
that carries information. In this section we will adopt the convention that a value
y = 0 means that the linear neuron is firing at its tonic rate, while positive and
negative y indicate true firing rates above and below the tonic rate respectively.
Hence all the quantities xj , y can be either positive or negative.

It is of great importance to experimental neuroscientists to establish whether neuronal
outputs are excitatory or inhibitory. This distinction is chemical rather than computational
and loses much of its importance in systems neuroscience. An inhibitory neuron can easily
have an excitatory effect (relative to the status quo) on down stream neurons if its firing
rate decreases below its tonic level.

We assume that this dependence of y on the xi is linear, so that the linear
neuron calculates a weighted sum of its inputs

(30) y = w1x1 + w2x2 + . . . + wnxn =
∑

wjxj .

The coefficient wj is called the weight or efficacy of the j-th synapse. Since synapses
can be excitatory or inhibitory weights can be either positive or negative.

Dimensional consistency requires that

(31) [y] = [wj][xj]

19

20 2. LINEAR ALGEBRA

and since y and xj both have the same dimensions (sec−1) the weights wj must be
dimensionless.

This may seem to be very unlike any real neuron, and often this difference is emphasised by
neuroscientists who will say things like ”property X - which I have just discovered - gives
neuron Y the computing power of a Pentium chip”. The commonly assume that linear
devices are too trivial for them to spend time on. In fact from a theoretical point of view
linearity is the most important property and unlikely a mathematical object can have, and
in practical applications such as electronics linear components are difficult to make and
absolutely essential to all kinds of devices. This is presumably why biology often goes
to extraordinary lengths to linearise various subsystems, and one would expect individual
neurons to be no exception. A neuron would be expected to have at least a small linear
operating regime because of the following argument: small changes in input firing rates

about some tonic level x
(0)
i will produce small changes in output firing rate around some

tonic level y(0). A Taylor approximation to first order predicts

y − y
(0) ≈

∑ ∂y

∂xj

(xj − x
(0)
j)

so we expect small fluctations about the tonic levels to satisfy the linear neuron equation

δy ≈
∑

wiδxi with wj =
∂y

∂xj

.

It is up to the ’non-linearist’ to demonstrate that this potentially extremely useful linear
regime is not the usual operating range of the neuron.

1.1. Vectors. It is convenient to think of a list of n scalars such as the inputs
xj to the linear neuron as a single object

(32) x = (x1, x2, . . . , xn)

called an n-vector or simply a vector. When written out as a row of numbers as
above the vector is called a row vector. In fact it is more conventional to write
vectors as columns

(33) x =


x1

x2

...
xn


(this is not just a notational point, more about this below).

In MatLab vectors are a basic data structure. A row or column 3 vector x with
components 1, 2, 3 can be constructed as follows

>> xrow = [10 20 30]

ans = 10 20 30

>> xcol = [4; 5; 6]

ans = 4

5

6

and its i-th component can be accessed as

>> xrow(2) % value of 2nd entry

ans = 20

>> i = 3;

>> xcol(i) % value of i-th entry

ans = 6

1.2. Arithmetic Operations. There are two basic arithmetic operations de-
fined on vectors. We will write these out in detail for column vectors only.

1. EXAMPLE: AN IDEALISED LINEAR NEURON 21

Firstly a vector x can multiplied by a scalar λ (greek letter lambda) by multi-
plying all its components by λ

(34) λx = λ


x1

x2

...
xn

 ≡


λx1

λx2

...
λxn

 .

In MatLab this operation is denoted by lambda*x as in

>> lambda = 2; % no Greek letters in MatLab!

>> x = [1; 2; 3];

>> lambda*x % query value

ans = 2

4

6

Secondly two vectors x and y can be added by adding corresponding compo-
nents

(35) x + y =


x1

x2

...
xn

+


y1

y2

...
yn

 ≡


x1 + y1

x2 + y2

...
xn + yn

 .

In MatLab this operation is denoted by x+y as in

>> x = [1; 2; 3];

>> y = [3; 2; 1];

>> x+y % query value

ans = 4

4

4

Rather than write out all the components of a vector equation it is sometimes useful
to use a notation like

(36) x− y = (xi)− (yi) ≡ (xi − yi)

(this equation defines vector subtraction).
The zero vector has all its its components zero. It is usually denoted by the

ame symbol, 0, as the scalar zero so it has to be recognised by its context, as in
x− x = 0.

1.3. Vectors in n-Dimensional Space. The components of a 2-vector (x1, x2)
can be thought of as the Cartesian coordinates of a point in a 2-dimensional space.
Similarly components of a 3-vector (x1, x2, x3) can be thought of as the Cartesian
coordinates of a point in a 3-dimensional space.

It is natural to generalise this and think of an n-vector as the coordinates of a
point in an n-dimensional space. For n > 3 (or n > 4 if you can imagine time as the
fourth dimension) these spaces are not easy to imagine, but it turns out that drawing
2D and 3D diagrams can often supply useful intuitions about problems in higher
dimensional spaces. The n-dimensional space with real numbers as coordinates is
usually denoted by Rn, so that R = R1 is the real line, R2 is the real plane and R3

describes 3D space.

22 2. LINEAR ALGEBRA

1.3.1. Length of a Vector. Many geometrical notions transfer directly into higher
dimensions. For example we can assign a length |x| to a vector x. In 2 dimensions
the length of a vector (x1, x2) is given by Pythagoras’ formula

(37) |x| =
√

x2
1 + x2

2

the in higher dimensions this formula can be generalised to give the definition of
length

(38) |x| ≡
√

x2
1 + x2

2 + . . . + x2
n =

√∑
x2

j

(this quantity is also called the magnitude or norm of the vector). In MatLab it
can be calculated using the function norm

>> u = [3 4 0];

>> norm(u)

ans = 5

Clearly the zero vector has zero length. If a vector has length 1

(39) |x| = 1

it is called a unit vector. Unit vectors are sometimes distinguished by a hat x̂. A
non-zero vector can be normalised, that is, made into a unit vector, by dividing all
its components by its own length

(40) x̂ =
1
|x|

x

e.g. in MatLab

>> u = [3 0 4];

>> uhat = u/norm(u)

uhat = [0.6 0 0.8]

>> norm(uhat)

ans = 1

1.3.2. The Dot Product. A geometrical construct that may not be so familiar
as length is the the dot (or scalar, or inner) product of two vectors. For n-vectors
u and v this is defined as

(41) u · v = u1v1 + . . . + unvn =
∑

uivi.

In MatLab this expression can be expressed very compactly, for example

>> u = [1 2 3];

>> v = [1 1 0];

>> d = sum(u.*v) % multiply elements and sum

ans = 3

The dot product of a vector with itself is clearly the square of its length

(42) u · u =
∑

u2
i = |u|2 |u| =

√
u · u

In 2 and 3 dimensions the dot product is related to the angle θ between the
two vectors and their lengths by the cosine rule

(43) u · v = |u||v| cos θ

In higher dimensions this relationship can be used to define the notion of angle
θ = ∠(u,v) between two vectors using the formula

(44) cos θ =
u · v
|u||v|

2. MATRICES 23

A very important situation is when the angle between two vectors is 90◦ (π/2
in grown up units of radians). Since cos 90◦ = 0 this happens when the dot product
is zero

(45) u · v = 0.

In this case the vectors are said to be perpendicular or more commonly orthogonal
and the above equation is called the orthogonality condition. The zero vecor is
trivially orthogonal to all vectors.

If two (non-zero) vectors are multiples of each other

(46) u = λv

then

(47) cos θ =
u · v
|u||v|

=
λu · u
λ|u||u|

= 1

so that the angle between them is θ = cos−1 1 = 0. Since the angle between them
is zero we say that they lie in the same direction. For example the normalisation
procedure above allows us to construct a unit vector x̂ in the same direction as any
vector x.

1.4. Geometry of the Linear Neuron. If we describe the neuronal inputs
and synaptic weights by vectors w and x then the output of the linear neuron
y =

∑
wjxj can be written very compactly using the dot product as

(48) y = w · x.

The output of the linear neuron is zero precisely when the input vector x is
orthogonal to the weight vector w. We shall see later that the set of all inputs
which give zero output forms a hyperplane in input space, called the null space of
w.

It is clear that we can get very large outputs from a neuron by haveing some
inputs or weights which are very large. Suppose we normalise out this dependence
by restricting ourselves to unit input and weight vectors x̂, ŵ. Then the firing rate
is just the cosine of the angle between these two vectors

(49) y = ŵ · x̂ = cos θ.

This output is zero, as noted above, when the vectors are orthogonal. It takes its
maximum value of 1 when the angle between the vectors is 0◦. That is, the linear
neuron is optimally tuned to detect input vectors lying in the same direction as the
weight vector.

Hence a linear neuron can be thought of as a detector which is maximally
sensitive to inputs lying along a single direction in input space, and minimally
sensitive to inputs lying in the n − 1-dimensional hyperplane orthogonal to this
direction.

2. Matrices

Now suppose we have m neurons all taking the same inputs xj and that the
output of the i-th neuron is yi. The axon carrying signal xj now synapses on m
different neurons so we need a notation for its synaptic weight on the i-th neuron;
we will call this weight wij .

The relationship between the output of this single layer neural net and its inputs
is completey described by the doubly-indexed array of scalars wij . The output of
the i-th neuron is

(50) yi = wi1xi1 + wi2xi2 + . . . + winxin =
∑

wijxj .

24 2. LINEAR ALGEBRA

It is convenient to think of a doubly indexed array of m×n scalars such as the
weights wij above as a single object W called an m× n matrix

(51) W = (wij) =


w11 w12 . . . w1n

w21 w22 . . . w2n

. .
wm1 wm2 . . . wmn


Conventionally the first index indicates row position and the second index column
position. In MatLab (“Matrix Laboratory”) matrices are the basic data structure.
A column 2× 3 matrix with components

W =
(

1 2 3
4 5 6

)
can be constructed and accessed as follows

>> W = [1 2 3; 4 5 6]

ans = 1 2 3

4 5 6

>> W(2, 3)

ans = 66

Rows and columns can be extracted from using the colon operator

>> W(1, :) % first row

ans = 1 2 3

>> W(:, 3) % third column

ans = 3

6

Matrices with only one row or column are called row or column matrices as well as
row and column vectors.

2.1. Matrix Transposition. Although it usual to write vectors as column
vectors this is only a convention. MatLab functions with vector output usually
produce row vectors by default e.g.

>> x = 1:4

ans = 1 2 3 4

>> x = linspace(0, 1, 5)

ans = 0 0.25 0.5 0.75 1

A useful operation in this context is Matrix transposition, which swaps the rows
and columns of a matrix. Transposition is usually denoted by a dash or superscript
T so that

(52) V = WT ⇔ Vij = Wji

for example

W =
(

1 2 3
4 5 6

)
has transpose WT =

1 4
2 5
3 6

 .

In MatLab transposition is notated by a dash

>> W = [1 2 3; 4 5 6]

W = 1 2 3

4 5 6

>> W’

ans = 1 4

2. MATRICES 25

2 5

3 6

Clearly the transpose of a row vector is a column vector and vice versa1
2
3

T

=
(
1 2 3

)
and this is sometimes used to format column vectors more concisely, as in

x =
(
x1 x2 . . . xN

)T
.

We are being a bit cavalier with concepts here. Is a vector really a column matrix? Are
row vectors different from column vectors? More on this later.

2.2. Matrix Arithmetic Operations. As with vectors, the basic arithmetic
operations can be defined on matrices. The first is multiplication by a scalar

(53) λW = λ(wij) = (λwij)

this is simply elementwise multiplication. In MatLab this would be

>> lambda = 2;

>> W = [1 2 3; 4 5 6];

>> lambda*W

ans = 2 4 6

8 10 12

The second is addition of two matrices V and W of the same size

(54) V + W = (vij) + (wij) = (vij + wij)

which is simply elementwise addition.

>> V = [0 0; 0 1];

>> W = [1 2; 3 4];

>> V+W

ans = 1 2

3 5

2.3. Matrix Multiplication. What makes matrices really interesting is a
third operation, called matrix multiplication. It might seem that a natural matrix
product would take two matrices of the same size and multiply them elementwise

(55) V �W = (vij)� (wij) = (vijwij).

This operation (sometimes called the Schur product) is useful in some contexts
(for example image processing). In MatLab it is implemented as the elementwise
product V.*W, for example

>> V = [1 1; 2 2];

>> W = [1 2; 3 4];

>> V.*W

ans = 1 2

6 8

The elementwise product is a poor relation to the much more interesting matrix
product. We will build this operation up in stages.

26 2. LINEAR ALGEBRA

2.3.1. Product of a Matrix and a Vector. We start with the equation above for
the output of a linear neuron

(56) yi =
m∑

j=1

wijxj .

and use this to define the product Wx of the m×n matrix W = (wij) and a column
n-vector x = (xj)

(57) y = Wx ⇔ yi =
m∑

k=1

wijxj .

Now we can write the equation for the outputs of the neuronal assemby in the
compact form

(58) y = Wx.

Notice that this defines a mapping (usually also called W)

(59) W : Rn → Rm W : x → y = Wx.

This transformation “squashes and squeezes” vectors input space to give vectors in
output space. Getting an feel for the nature of these linear transformations is a
really useful mathematical tool.

In MatLab the matrix-vector product is simply denoted by *

>> W = [1 1; 2 2];

>> x = [2; 3];

>> W*x

ans = 5

10

It is worth learning how to do this calculation by hand.
2.3.2. Product of two Matrices. I will derive the matrix product in a concrete

application. Suppose we put two single layer nets end-to-end to form a 2-layer net.
The m firing rates y output by the first layer are used as inputs to a second layer of
p neurons whose outputs form the p-vector z. The synaptic weights for this second
layer form a p× n matrix V . The computations performed by these two layers are

(60) y = Wx z = V y.

so we have an overall transformation

(61) x W−→ y V−→ z

(62) Rn W−→ Rm V−→ Rp.

To characterise the overall transformation of inputs x into outputs z will involves
a short calculation. From the definition of the matrix-vector product we have

(63) zi =
∑

j

Vijyj =
∑

j

Vij

(∑
k

Wjkxk)

)
=
∑

k

∑
j

VijWjk

xk

and the last term has exactly the form of a matrix-vector multiplication

(64) zi =
∑

k

Pikxk

where the new matrix P has elements

(65) Pik =
∑

j

VijWjk.

2. MATRICES 27

We call this matrix the matrix product P = V W .
Although the multiplication rule may look complex the operation it describes

is very common and natural. The matrix W transforms n-vectors x into m-vectors
y. The matrix V transforms m-vectors y into p-vectors z. The product matrix
P = V W defined above represents the overall transformation from m-vectors x
into p-vectors z

(66) z = V y = V (Wx) = (V W)x.

In MatLab this product is denoted by V*W. The following code segment checks
that MatLab’s implementation of the matrix product is correct

>> V = [1 0; 1 1]; % 2x2 matrix

>> W = [1 2 3; 1 1 1]; % 2x3 matrix

>> x = [0; 1; 0]; % 3-vector

>> y = W*x % x->y

ans = 2

1

>> z = V*y %y->z

ans = 2

3

>> P = V*W % matrix product

ans = 1 2 3

2 3 4

>> P*x % check x->z; OK!

ans = 2

3

The consequence for the two-layer net is quite interesting and profound. It means that
for linear neurons two-layer nets can always be replaced by a one-layer net with synap-
tic weights defined by the matrix product formula. This is sometimes misunderstood to
suggest that linear neurons aren’t very useful.

The unit or identity matrix is the n× n matrix

(67) I =


1 0 . . . 0
0 1 . . . 0
.
0 0 . . . 1


(sometimes called In) which has 1’s on the diagonal and zeros elsewhere. It has the
important property of leaving all n-vectors unchanged under multiplication

(68) Ix = x.

Hence its action as a transformation is just to leave its the inputs unchanged. The
neural net it describes produces outputs equal to its inputs. In the brain this useful
function would be better implemented by a fibre tract rather than a neural net
(though some procesing stages in the brain mysteriously seem to do little more
than this).

If the dimensions are compatible multiplication by a unit matrix on either left
or right leaves the matrix unchanged, that is

(69) AI = A IB = B

for all m × n matrices A and n × m matrices B. It therefore behaves like a ma-
trix generalisation of the unit scalar 1. In MatLab the n × n identity matrix is
constructed using the function eye e.g.

28 2. LINEAR ALGEBRA

>> I = eye(3)

I = 1 0 0

0 1 0

0 0 1

3. Matrix Inverses and Solving Linear Equations

A matrix W describes a linear transformation

(70) W : x → y.

A very basic questions in mathematics is whether a given transformation can be
reversed, and, if so, how. For our single-layer neural net the corresponding question
is: given an output y can we find the input x that produced it? If we can do this
for any y, and the corresponding x is unique, then the transformation is said to be
invertible. That is, we can find a mapping

(71) V : y → x

such that for all x in Rn

(72) x W−→ y V−→ x

This problem can be thought of as attempting to determine n independent
quantities xj given the m measurements yi, and it seems reasonable to begin by
looking at the case m = n, so that the dimensions of the input and output spaces
are the same. In that case W is a square matrix.

We are clearly asking whether multiplication of a vector by a square matrix can
be reversed. Consider the operation ‘multiply by a scalar k’. This can be reversed
by performing the operation ‘multiply by the inverse of k, that is, k−1 = 1/k’ (the
only exception being when k = 0), that is

(73) k−1(kx) = x

for all scalars x.
The transformation ‘multiply by a matrix W ’ is reversible if there is a matrix

V = W−1 such that

(74) W−1(Wx) = x

for all vectors x. If such a matrix exists it is called the inverse of W . When an
inverse exists it is both a left and right inverse the property

(75) W−1W = WW−1 = I.

Calculating the inverse of a large matrix is no easy matter. MatLab finds
inverses efficiently and pretty much as accurately as possible using the function
inv

>> A = [1 2; 0 2]

>> Ainv = inv(A)

Ainv = 1.0000 -1.0000

0 0.5000

>> A*Ainv

ans = 1 0

0 1

Some square matrices have no inverse and a non-invertible matrix is said to be
singular (this is like the exception k = 0 for the scalar case). If an inverse does not
exist it is for a very good reason. It happens when there is a non-zero vector x such
that Wx = 0; x is then called a null-vector of W . If x is a null-vector then there

3. MATRIX INVERSES AND SOLVING LINEAR EQUATIONS 29

are two different vectors, 0 and x, which map to 0 under W , hence W cannot have
an inverse (in general a function must be one-to-one to have an inverse).

Another test for singularity of a matrix W is to calculate its determinant, a
scalar quantity denoted by det(W) (sometimes |W |) which we will discuss later. A
matrix is singular if

(76) det(W) = 0

For example in MatLab

>> W = [1 1 1; 1 2 3; 2 3 4]

W = 1 1 1

1 2 3

2 3 4

>> det(W)

ans = 0

>> inv(W)

Warning: Matrix is singular to working precision.

ans =

Inf Inf Inf

Inf Inf Inf

Inf Inf Inf

In elementary algebra the operation we are describing here is called solving a
system of linear equations. In this case the system is

w11x1 + w12x2 + . . . + w1nxn = y1

w21x1 + w22x2 + . . . + w2nxn = y2

. . .

wn1x1 + w22x2 + . . . + wnnxn = yn

You may have learned how to solve such equations by elimination (many years ago
you would have learnt Cramer’s rule). The solution proposed here is to write this
as a matrix equation Wx = y and solve it using the matrix inverse as x = W−1y.
This is easily implemented in MatLab. For example to solve

2x + 3y + z = 6
x− y + z = 1
x + y + z = 3

we use the code

>> W = [2 3 1; 1 -1 1; 1 1 1];

>> Y = [6 1 3]; % W*X = Y

>> X = inv(W)*Y

ans = 1

1

1

so the solution is x = y = z = 1.

As noted above calculating inverses of large matrices is expensive and prone to error. It
turns out that there are better algorithms for solving large systems of linear equations than
simply calculating an inverse matrix. To use one of these in MatLab replace X = inv(W)*Y
by the right-division operation X = W\Y.

30 2. LINEAR ALGEBRA

4. Least Squares Approximation

“I try (information)
Yes I try (too much information)
Why should I try (information)
Cause I try (too much information)”
Too Much Information, Duran Duran

4.1. Additive Noise. Let’s consider a situation where the outputs yi of the
output are subject to errors ei due to neural noise

(77) y = Wx + e

(this noise model is called additive noise). We will assume that m > n so there
a more (perhaps many more) equations than unknowns. In this situation we are
trying to determine the input given a lot of noisy output information. How can we
get a good estimate of the input vector in this situation?

This problem is a very simple example of population coding. The information about a
small number of inputs x is coded by the noisy outputs y of a large population of linear
neurons. We wish to decode this population output.

Suppose we choose a value for the input x. then the associated errors due to
noise would have to be

(78) e = y −Wx.

If we know that the true noise levels are small it is reasonable to choose a value
x which makes e as small as possible. A good measure of how small e is, is the
squared length

(79) E(x) =
1
2
|e|2 =

1
2

∑
e2
i

which is also the sum-square-error (ignore the factor half for now). I have written
E as a function of x because the sum-square error depends on our choice of x.

The least-squares solution makes this quantity as small as possible; this is
written

(80) x̂ = argmin
x

E(x)

(the hat is conventionally used here to denote an estimate, and argminx means “the
argument x which minimises”).

We will be doing a lot more on least squares estimation. Here I just want
to write down the solution with minimal justification. It turns out that the least
squares estimate is given by the matrix formula

(81) x̂ = (WT W)−1WT y.

We should check, firstly, that this formula makes sense. Since W is m × n
and WT is n ×m we can multiply them (since the inner dimensions match). The
result WT W is square (its size is m ×m) so if it is non-singular (assume this for
the moment) it can be inverted to get (WT W)−1. Secondly we should check what
happens if there is no noise If y = Wx∗ then

(82) x̂ = (WT W)−1WT y = (WT W)−1WT (Wx∗) = (WT W)−1(WT W)x∗ = x∗,

the estimate gives the true value just as it should.
The least squares formula above can be implemented directly in MatLab

>> W = randn(100, 3); % a big, random, 3 input 100 output network

>> x = [1; 1; 1]; % the true input

>> e = 0.1*randn(100, 1); % Gaussian noise with std = 0.1

4. LEAST SQUARES APPROXIMATION 31

>> y = W*x+e; % newtwork outputs corrupted by noise

>> xhat = inv(W’*W)*W’*y % LSQ estimate of input

ans = 1.010

1.0036

0.995

(in practice it is more efficient and accurate to use the left-division routine xhat = W\y
just as for the case m = n). Note that the inputs have been recovered to reasonable
accuracy. Least squares estimation is one of the most useful techniques in applied
mathematics. Expect to see much more of it.

Part 2

Reference

CHAPTER 3

Numbers and Sets

Set theory is important ... because mathematics can be exhibited
as involving nothing but set-theoretical propositions about set-
theoretical entities D M Armstrong

1. Set Theory

A set is a collection of objects. For example we can speak of the set S containing
the numbers 1, 2 and 3 which we denote by

(83) S = {1, 2, 3}.

The order in which the elements are expressed in this notation is immaterial, so we
could equally well write

(84) S = {3, 1, 2}.

The number 3 is an element of S which we write as

(85) 3 ∈ S

and the number 4 is not S, which we write as

(86) 4 /∈ S.

Suppose we have two sets, this times sets of letters.

(87) S = {a, b, c} T = {b, c, d}

The intersection of these two sets is the set of all elements which belong to both
the sets

(88) S ∩ T = {b, c}.

Their union is the set of all elements which belong to either set

(89) S ∪ T = {a, b, c, d}

(remember the set union symbol looks like the letter U for union).
It is very useful to have a notation for the empty set, that is, the set with no

elements

(90) ∅ = {}

You should be able to work out why the following statements are true for any set
S

(91) S ∪ ∅ = S S ∩ ∅ = ∅

We often define sets by rules for membership using a notation like

(92) M = {x : x ∈ S or x ∈ T}

which defines the set M = S ∪ T .

35

36 3. NUMBERS AND SETS

1.0.1. Logical Symbols. Sometimes it is useful to have a more compact notation
and accurate for logical statements.

If x is a variable and P and Q are propositions Some useful constructs are
For all x

∀x

There exists an x

∃x

P implies Q (that is, Q is true whenever P is).

P ⇒ Q

P and Q

P ∧Q

P or Q (or possibly both)

P ∨Q

Not P

¬P

You should be able to see why the statement

∀x, x /∈ ∅

is necessarily true, and the statement

∃x, x ∈ ∅

is necessarily false.

2. Number Systems

2.0.2. The Natural Numbers. The natural numbers are the numbers used in
counting (sometimes called cardinal numbers).

(93) N = {0, 1, 2, 3, . . .}

Opinion is divided as to whether 0 is a natural number. Since it is the natural
answer to a “how many question” (for example how many sheep do I have, answer:
zero) most mathematicians include it. If we want to leave out zero from a set we
will use the star notation

(94) N∗ = {1, 2, 3, . . .}

The natural numbers are said to be closed under addition and multiplication
since the sum and product of any two natural numbers is a natural number

(95) x, y ∈ N ⇒ x + y, xy ∈ N.

They are not closed under subtraction, for example there is no number 3− 6 in N.
Put differently, the equation

(96) x + 6 = 3

has no solution in N. To get a solution to this equation we need to include negative
numbers.

2. NUMBER SYSTEMS 37

2.0.3. The Integers. The integers are the whole numbers, both positive and
negative

(97) Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
The integers are closed under both addition, multiplication and subtraction

(98) x, y ∈ Z ⇒ x + y, xy, x− y ∈ N.

and any equation of the form

(99) x + m = n m, n ∈ Z
now has a solution

(100) x = m− n ∈ Z.

2.0.4. The Rational Numbers. The integers are the fractions, both positive and
negative

(101) Q = {. . . , 1
2
,−10117, 3, . . .}

It is clear that the brackets notation is beginning to break down. We can write
instead

(102) Q = {m

n
: m ∈ Z, n ∈ Z∗}

these are the fractions with any integer as numerator (top) and any integer but 0
as denominator (bottom).

Any equation of the form

(103) px + q = r p, q, r ∈ Q (p 6= 0)

now has a solution

(104) x =
r − q

p
∈ Q.

2.0.5. The Real Numbers. It was a great disappointment to the ancient Greeks
that the rational numbers did not seem to be adequate for geometry. For example
the diagonal of a unit square has length

√
2 = 1.4142136 . . . which is not a rational

number.
A straightforward but inelegant way of defining the real numbers is as the set of

all infinite decimals, positive or negative (to make decimals unique, we need the rule
that decimals ending in recurring 9 are always rounded up e.g. 0.19999999 . . . =
0.2). We can recognise the rationals among the reals because their decimal expan-
sions either terminate, e.g. 1

4 = 0.25 or recur e.g. 1
7 = 0.142857142857 Hence

the number

(105) τ = 0.1010010001000010000001 . . . ∈ R
(can you guess the rule for writing out τ?) is a well defined real number that is not
rational.

The decimal expansion of a real number like
√

2 gives us the following series of
ever better approximations

(106) 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

and this sequence of numbers lies in Q even if the limit, in this case,
√

2 does not.
We can think of the infinite decimals as numbers ‘plugging the holes’ in Q.

In fact this is the main reason for the importance of the real numbers, all the
sequences of numbers in R that look as though they should have limits do have
limits in R: the set R is said to be closed.

CHAPTER 4

Notation

1. Subscripts, Superscripts, Sums and Products

Suppose we take N measurements of a length. We could call them a, b, c, . . .
but this would be confusing and we would soon run out of variable names. It is
convenient to use subscript notation and refer to the lengths as

l1, l2, l3, . . . , lN .

The i-th measurement is then li. The MatLab equivalent of this is a vector l with
elements l(i).

Occasionally we use superscripts

l1, l2, l3, . . . , lN

but the superscripts can be confused with exponents, for example l2 might be read
as l-squared. When confusion is likely a notation like

l(1), l(2), l(3), . . . , l(N)

(where superscripts are simply encosed in brackets) can be used.
Suppose we make M measurements on N subjects, then the i-th measurement

on the j-th subject can be denoted lij using double subscript notation. Other
notations in common use are

lji li,j l
(j)
i etc.

MatLab implements a doubly indexed quantity like this as a two-dimensional array
l with elements l(i, j).

The sum
x1 + x2 + . . . + xN

of a N variables xi is written using a Greek capital sigma as

N∑
i=1

xi

and read as ‘sum from i = 1 to N of xi’. This notation will often be compressed to∑
i

xi or
∑

xi or even
∑

x

when no confusion is possible.
MatLab can evaluate the sum y =

∑N
i=1 xi of the elements of a vector x using

a for-loop)

y = 0; % this will store successive values of the sum

for i = 1:N % make the list of indices to be used

y = y + x(i); % add in latest value of x(i)

end % repeat with new i until end of list

39

40 4. NOTATION

or directly using the single command y = sum(x).
Summation signs can be used on other occasions, for example

10∑
i=1

i = 1 + 2 + 3 + . . . + 10

If we have a double array yij for i = 1, . . . ,M and j = 1, . . . , N then we can
find row sums (sum over all j keeping row i constant) and column sums (sum over
all i keeping row j constant)

ri =
∑

j

yij cj =
∑

i

yij .

The sum of all the yij can be obtained as the combined total of either the row or
column sums ∑

i

ri =
∑

i

∑
j

yij

∑
j

cj =
∑

j

∑
i

yij

it is clear that these must produce the same result so summation signs in double
sums can be commuted ∑

i

∑
j

yij =
∑

j

∑
i

yij

often we simply write∑
i,j

yij

∑∑
yij or

∑
yij

for a double sum. In MatLab the double sum
∑

yij for an array y is obtained using
sum(sum(y)).

Other useful facts are ∑
i

(xi + yi) =
∑

i

xi +
∑

i

yi∑
i

axi = a
∑

i

xi

(∑
i

xi

)∑
j

yj

 =
∑
i,j

xiyj

you can check these formulae by writing them out in full for i = 1, 2, j = 1, 2.

There is a similar notation for the product of N variables xi using the Greek
capital pi

N∏
i=1

= x1x2 . . . xN .

so that
4∏

i=1

i = 1× 2× 3× 4 = 24

CHAPTER 5

Functions

1. Functions in Applications

In applications functions usually turn up as the dependence of a variable (say
volume of water in a bath V) on another variable (for example time since the tap
was turned on t). In principle for any value of the independent variable t there is
a corresponding value of the dependent variable V .

The the dependent variable is said to be a function of the independent variable
and this functional dependance can be expressed explicitly as in “the volume V (t)”
(read V of T) but also left implicit as in “let V be the volume of water at time t”.

2. Functions as Formulae

An explicit formula for calculation one variable in terms of another

(107) y = x2

is often referred to as a function. In fact this is the earliest notion of function used
in mathematics. The idea is that, given a value for x, we can use the formula to
evaluate the corresponding y.

3. Functions as Mappings

The general definition of function regards it as a mapping from a set S to a set
T

(108) f : S → T

If we choose any element x ∈ S then there is a unique elemnt y ∈ T which is the
image of x under f

(109) f : x → y

(read f sends x to y). which can be written equivalently as

(110) y = f(x)

The set S is called the domain of f , the set T is called the co-domain. The range
of f is the set

(111) Range(f) = {f(x) : x ∈ S}
This range is a subset of the co-domain T but may not be the whole of T .

For example let

(112) s : R → R, x → x2

then the range of s consists only of positive numbers

(113) Range(s) = R+ = {x ∈ R : x ≥ 0}
Some elements of T may not be equal to f(x) for any x ∈ S.

A function of variable is thus a rule for associating an output value with a
given input value. The domain of the function is the set of allowed input values,
the range is the set of possible output values.

41

42 5. FUNCTIONS

We will use the notation y = f(x) or f : x → y to indicate that the function f
associates the input x with the output y.

A function whose domain is finite can be specified by giving a list of inputs and
outputs, for example

F : 1 → 6
2 → 4
3 → 2

specifies a function F with domain 1, 2, 3 and range 2, 4, 6.
A function presented in this way can be implemented very efficiently as a look-up-table,
since it involves only array access operations.

More often the functions we will deal with functions specified by a formula
whose domain is the real numbers or some interval in the reals. For example

y = x3

f(x) = x3

x → x3

all specify the same function, that which associates a number with its cube.
Mathematicians are much stricter about terminology than we will be. For example some
would object to saying ‘the function f(x)’ on the grounds that f(x) is merely a value of
the function, not the function itself.

4. Linear and Affine Functions of One Variable

The equation of a straight line is

y = mx + c

where m is the slope (change in y for unit change in x) and c is the intercept
(value of y for x = 0). If y is given then we have a linear equation for x with
solution x = (y − c)/m. That is, we can find the inverse of the function x → y
(unless m = 0). This is the simplest example of a linear problem. Linear problems
are important because, using matrix methods, they can usually be solved just as
easily as this 1D example. In this section we will begin to formalise the concept of
linearity as preparation for later lectures on Linear Algebra.

Consider the case c = 0. The function x → mx has two crucial properties

m(u + v) = mu + mv

m(ku) = k(mu)

on which we will base our definition of linearity.
We will call a function x → f(x) linear if it has the properties

f(u + v) = f(u) + f(v)
f(ku) = kf(u)

In fact in one dimension the only such function is y = mx, since

y = f(x) = f(x.1) = xf(1) = mx where m = f(1)

where we have used the second linearity property.
A linear function always has the property that f(0) = 0 since

f(0) = f(0 + 0) = f(0) + f(0) ⇒ f(0) = 0

where we have used the first linearity property and cancelled f(0)’s. Thus y =
mx+ c, though it is a linear equation does not define a linear function unless c = 0.
A function which is a linear function plus a constant term is called affine so f(x)
is affine only if f(x) = g(x) + c where g(x) is linear.

5. PIECEWISE SPECIFICATION OF FUNCTIONS 43

For functions of one variable the graph of
• an affine function is a straight line
• a linear function is a straight line through the origin

Mathematicians often use words ambiguously if the ‘correct’ meaning is clear from the
context. The French mathematicians Bourbaki called this useful trick abus de notation.
For example the word linear is often used to mean affine, as in linear equation or linear
problem. You just need to use a little care if you are uncertain.

5. Piecewise Specification of Functions

Sometimes a simple formula is not enough. Often different formulae must be
used on different parts of the domain.

For example ocular motor neurons (OMN’s) are neurons which synapse onto
the muscles responsible for eye movements. As the left eye looks from left to right a
neuron innervating the medial rectus muscle will increases its firing rate to contract
that muscle.

Such a neuron might have the following relationship between eye position θ
(measured as angle between the view direction and straight ahead in degrees) and
firing rate F (θ) (measured in spikes per second)

F (θ) =

 0 θ ≤ 0
5θ 0 < θ ≤ 40
200 θ > 40

This OMN does not fire for negative angles (looking to the left). Once it reaches
the straight-ahead position it increases firing rate gradually from 0 to a maximum
of 200Hz = 5× 40 at a viewing angle of 40◦ to the right. For larger angles its firing
rate remains at this maximum value.

We can implement this function directly in MatLab using the if statement

function F = firing_rate(theta)

if theta <= 0

F = 0;

elseif theta <= 40

F = 5*theta;

else

F = 200;

end

Unfortunately this function will not work elementwise on vector inputs. To do
this we need a for loop

function F = firing_rate(theta)

n = length(theta); % get length of vector

F = zeros(1, n); % assign row of storage for result

for i = 1:n

if theta(i) <= 0

F(i) = 0;

elseif theta(i) <= 40

F(i) = 5*theta(i);

else

F(i) = 200;

end

end

44 5. FUNCTIONS

Plot the firing rate curve using an elementwise version of the function

theta = linspace(-50, 50, 100); % range -50 deg to 50 deg

F = firing_rate(theta); % firing rate for each position

plot(theta, F);

(try to sketch the function before you use MatLab).

A slick vectorised version of the elementwise function is

function F = firing_rate(theta)

F = 5*(theta > 0 & theta <= 40)+200*(theta > 40)

Try to understand it (\& forms the element-wise logical and of two bit-vectors).

The example of the ocular motor neuron above is interesting from this point
of view of invertibility. Though the input-output function is not 1-1 (for example
all positions to the left are associated with output zero) it is 1-1 on the restricted
domain 0 ≤ θ ≤ 40. This means that in this range we can recover eye position
uniquely from the neuron firing rate (the explicit formuula is θ = F/5). We say
that over this range OMN firing rate codes for position. The position at which an
OMN starts firing varies from neuron to neuron, so activity of the population as
a whole specifies eye position uniquely over the whole visual range. This is called
population coding.

6. Linear and Affine Functions of Two Variables

A linear function of two variables is a function z = f(x, y) with the following
properties

f(x1 + x2, y1 + y2) = f(x1, y1) + f(x2, y2)
f(kx, ky) = kf(x, y)

In words this means

• the output for the sum of two inputs is the sum of the individual outputs
• the output after scaling the inputs equally can be obtained by scaling the

original output

We can obtain a general formula for all linear functions of two variables simply
by applying these rules in succession

f(x, y) = f(x + 0, 0 + y)
= f(x, 0) + f(0, y)
= f(x.1, x.0) + f(y.0, y.1)
= xf(1, 0) + yf(0, 1)

so

f = ax + by where a = f(1, 0) b = f(0, 1).

An affine function of two variables is defined as a linear function plus a constant

f = ax + by + c where c = f(0, 0).

You should know that the graph (surface plot) of an affine function z = ax+ by + c
is a plane and its contour lines are equally spaced straight lines.

9. USING SKETCHES AND DIAGRAMS 45

7. The Affine Neuron

Suppose a neuron takes inputs x1, x2, from axons which have synaptic weights
w1 and w2, and has a constant level of input w0. Then the total synaptic activation
is

a = w1x1 + w2x2 + w0

which is an affine function of the inputs (compare it with the formula in the last
section). Often the approximation is made that the neuronal output is proportional
to this synaptic input (justified when the input is positive but not too large). This
gives the affine neuron model used in many artificial neural simulations.

8. Non-Linearity and Linearisation

It is clear that linear functions are very special. Most functions are non-linear.
It is important to be able to recognise linear functions because of the slogan

linear problems easy, non-linear problems hard.
Only recently have mathematicians discovered tools for attacking generic non-linear
problems, and the subject of non-linear methods is still in its infancy. Even so,
learning linear methods is important, since many approaches to solving non-linear
problems begin by an attempt to linearise the problem.

For example some problems have fake non-linearities. If you are asked to solve
the equation

y = 2ex + 3
for y in terms of x it looks hard. However if you set X = ex the equation becomes
y = 2X + 3, a linear equation for X (after which x can be obtained from X as
x = log X). Another example is the function

z = 2 sin x + 3ey + 1

which is an affine function of the new variables X = sinx and Y = ey.
Linearisation by change of variable is a common technique in psychology. For example
the relationship of subjective sensation to stimuli such as brightness or intensity is often
linearised by a change of variable (usually a logarithm or a power law), the Weber-Fechner
∆I/I law is an example where a logarithmic change of variable can be used.

If a function is well-behaved (that is, its graph or surface plot is smooth) then
for small regions that graph can be well-approximated by a line segment or a planar
patch. We say the function can be decomposed into locally linear pieces. Problems
can then be solved by divide and conquer strategy, in which the local linear problems
are solved, and the results combined. This is the basis of many neural architectures
you will meet later, such as blending function methods.

9. Using Sketches and Diagrams

Exam questions often require graphs to be plotted, curves to be sketched, etc.
Often it is impossible to give good marks because simple rules are not followed.
For example a satisfactory answer to ‘sketch contour lines for z = x2 + y2’ is not a
disembodied ovalish curve floating among the text.

Using matLab means that accuracy is not a problem, but a few simple rules
will help your readers. Remember to include (where appropriate)

• A title, e.g. ‘Sample contour lines of z = x2 + y2’
• axes labels (simply x and y in this case)
• axis units for quantities which are not pure numbers (use the SI convention

‘Height h/kg’ or the more common ‘Height h (kg)’)
• grid lines if they make the plot clearer, or if it is likely to be used to read

off values.

46 5. FUNCTIONS

• marked data points to emphasise actual data used to plot the curve
• clear annotations for important features

it also helps if yo
• choose a display format for 3D data (e.g. mesh, surf or contour) which

conveys most information rather than that which looks prettiest.
• produce all the plots at the same scale if results from multiple plots are

to be compared (use the axis command with values from the plot with
the largest data ranges).

CHAPTER 6

Calculus

1. Differentiation

1.1. Rates of Change. Let x(t) be the distance (units miles) that a car has
travelled along a road at time t (units hours). What do we mean by the velocity of
the car at time t? Car velocities are measured here in the UK in miles per hour so
the following procedure is reasonable:

Measure the position x(t) at time t hours. Wait for one hour so the time is
now t + 1. Measure the new position x(t + 1). The total distance travelled is

(114) ∆x = x(t + 1)− x(t)

and the time taken was

(115) ∆t = 1

so the estimated velocity is the distance travelled divided by the time

(116) v =
∆x

∆t
= x(t + 1)− x(t).

Is this really the velocity at time t? It is clear that the velocity could have changed
a lot during the measurement process, for example, the driver could have stopped
and had a sandwich. At best this gives a measure of average velocity over the one
hour measurement period.

What we really want is a continuous readout of velocity (similar to the one
on the car’s speedometer). To do this we have to take measurements spaced more
closely in time. The procedure goes like this: choose a short time period ∆t,
measure the distance travelled

(117) ∆x = x(t + ∆t)− x(t)

and estimate the velocity (distance per unit time) as

(118) v =
∆x

∆t
=

x(t + ∆t)− x(t)
∆t

Clearly this is still an average, even if it is over a short time period. Mathe-
matically we get round this by taking the limit as the time ∆t goes to zero

(119) v(t) = lim
t→0

∆x

∆t
= lim

t→0

x(t + ∆t)− x(t)
∆t

We will use the Newton and Leibniz notations for this quantity

(120) v(t) = ẋ(t) =
dx

dt

Need to add:
• derivative as slope of a curve
• example of calculating derivative as limit
• use of of derivative tables and formulae
• notation f ′(x)

47

48 6. CALCULUS

1.2. Taylor Series to First Order. If we take a short enough time ∆t then
the average velocity will be a good approximation to the velocity

(121)
dx

dt
≈ x(t + ∆t)− x(t)

∆t
Rearranging this formula gives

(122) x(t + ∆t) ≈ x(t) +
dx

dt
∆t = x(t) + v(t)t∆t

That is, if we know the position and the velocity now we can predict (approximately)
positions for a short time into the future.

Let’s express in slightly different notation for the function y = f(x), using the
common notation

(123) f ′(x) =
dy

dx

for the derivative of f(x).
The approximation above becomes

(124) f ′(x) ≈ f(x + h)− f(x)
h

for small h. Hence

(125) f(x + h) ≈ f(x) + hf ′(x)

This expression is linear in the small quantity h. It is called the Taylor approxima-
tion to first (or linear) order.

• 1st order taylor as eqn of tangent line
• implications for modelling
• order of approximation
• chain rule

2. Integration

• physical interpretation of time inegral
• integral as area under curve
• fundamental theorem of integration
• definite and indefinite integrals
• using tables of integrals and formulae

CHAPTER 7

Special Functions

... special functions provide an economical and shared culture
analogous to books: places to keep our knowledge in, so that we
can use our heads for better things. Michael Berry

1. The Straight Line

We begin with the well-known function

(126) y = mx + c.

As the following code segment shows this the equation of a straight line

x = linspace(-1, 1, 100);

m = 1/2; c = -1;

y = m*x+x;

plot(x, y)

with slope m and intercept c.
This function is invertible if m 6= 0 giving

(127) x =
y − c

m
=

1
m

y − c

m
.

which is again the equation of a straight line.
By analogy an expression is called linear in a variable x if it can be written as

(terms not depending on x) + (terms not depending on × x

2. The Quadratic

The simplest non-linear function is obtained by including quadratic terms

(128) y = ax2 + bx + c.

In the degenerate case a = 0 we are back to the straight line. Otherwise the graph
of this equation is a parabola. If a > 0 (bowl full) its unique stationary point which
is a minimum, if a > 0 (bowl empty) it is a maximum.

The function does not have a unique inverse but there is a formula giving the
two possible values, since we can solve the quadratic equation

(129) ax2 + bx + (c− y) = 0

using the standard formula to get

(130) x =
−b±

√
b2 − 4a(c− y)

2a
The derivative is the linear function

(131)
dy

dx
= 2ax + b

and second derivative is a constant

(132)
d2y

dx2
= 2a,

49

50 7. SPECIAL FUNCTIONS

all higher derivatives are zero.
The fact that the derivative of a quadratic is linear means that we can easily

solve for the position of the stationary points. From dy
dx = 0 we find a single

stationary point

(133) x0 =
−b

2a

If a > 0 this is a global maximum, if a < 0 it is a global minimum, so it is always
an extremum.

The value of the function at the extremum is

(134) x0 = c− b2

4a
.

A non-calculus way to obtain this result is by completing the square

(135) y = a(x− b

2a
)2 + (c− b2

4a
).

and staring at the result.
It is the ease with which maxima and minima can be located which makes

quadratic expressions so important in applied mathematics (see: the Lamp Post
Factor).

3. The Exponential Function

The exponential function is denoted by

(136) y = ex = exp(x)

It’s inverse is the logarithmic function (with base e)

(137) x = ln(y) eln(y) = y

It has the everywhere convergent Taylor expansion

(138) y = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
n=1

xn

n!

which can be used to define this function.
It’s most important property is that it is it’s own derivative

(139)
dex

dx
= ex dy

dx
= y.

and hence it’s own integral

(140)
∫

exdx = ex + c

It converts summation into multiplication

(141) exp(x + y) = exp(x) exp(y)

Powers of another number p can be written in terms of the exponential function

(142) y = px = (eln(p))x = ex ln(p)

It is useful to memorise the slightly more general form of the derivative

(143) y = eax

(144)
dy

dx
= ay.

6. BASIC HYPERBOLIC FUNCTIONS 51

4. The Logarithmic Function

(145) y = ln(x)

(146) ln(1 + x) = x− x2

2
+

x3

3
+ . . .

(147)
dy

dx
=

1
x

(148) y = loga(x) =
ln(x)
ln(a)

(149) ln(xy) = ln(x) + ln(y)

5. Basic Trigonometric Functions

(150) u = sin(t)

(151)
du

dt
= cos(t)

(152)
∫

sin(t)dt = − cos(t) + c

(153) sin(t + 2π) = sin(t) π = 3.1415926535 . . .

(154) sin(t + π) = cos(t)

(155) sin(ωt)

(156) sin(2πft)

(157) T =
2π

ω
=

1
f

6. Basic Hyperbolic Functions

Part 3

MatLab

CHAPTER 8

MatLab: a Quick Tutorial

We will be programming in MatLab, a very popular environment for mathemat-
ical modelling. Because it was designed for research and prototyping of scientific
and engineering applications it is fast and flexible. It has many built-in features
which greatly simplify the writing of modelling software

• a fairly standard interface across different platforms (include PC’s, Mac’s
and Unix machines)

• good graphics/visualisation capabilities
• many high-level mathematical operations implemented as standard
• extensive toolboxes (such as the image processing toolbox) which extend

its capabilities

MatLab is used extensively within the Department of Psychology where current
applications of MatLab include

• modelling the control functions of the basal ganglia
• modelling cerebellar control of eye movements
• producing movies for visual psychophysics
• analysing psychophysical data on stereo vision
• analysing sequences of brain imaging data (optical and fMRI)
• investigating neural architectures for signal analysis.

1. Entering Commands and Correcting Errors

Running (opening/launching) MatLab produces a command window as shown
in Figure 1. Matlab is an interactive language - you type in expressions and MatLab
evaluates them and tells you the answer. The prompt sign:

>>

shows that MatLab is waiting for input from you.

Figure 1 The MatLab Command Window as seen on a PC.

55

56 8. MATLAB: A QUICK TUTORIAL

You may have to click on the command window before you can start typing.
After you have typed in an expression to evaluate MatLab waits for you to hit the
return key before it starts processing your commands.

You can correct typing errors on the command line on a PC or Mac in the usual
way, using the editing keys:

• left and right arrow keys to move the cursor (insert point) left or right
• delete/backspace to forward/backward delete characters
• the mouse to cut and paste text from elsewhere
• the up-arrow key to retrieve previous commands (you can use up and

down-arrows to navigate through the entire history of previous commands)
alternatively confirmed hackers can use emacs-style keyboard editor commands if
they prefer.

If a command is incorrect MatLab will usually display an error message. It
is worth remembering that some mistakes may lead to long calculations and the
machine will stop responding, if this happens the calculation can (sometimes) be
interrupted using Ctrl-C (press Ctrl and C together).

2. MatLab as a Desk Calculator

We will begin by using MatLab to do some simple arithmetic. After the MatLab
prompt type

1+1

then hit return. MatLab will reply with something like

ans = 2

Here are some other examples (you need not enter the explanatory comments which
appear after the \% sign):

>> 3+2 % this comment is ignored

ans = 5

>> 3-2

ans = 1

>> 3*2 % the * denotes multiplication

ans = 6

>> 7/2 % the / denotes division

ans = 3.5

>> 3^2 % 3 squared (a^b means a to the power of b)

ans = 9

The result 7/2 = 3.5 may surprise those with experience of other computer languages
where integer division would be used so that 7/2 = 3 (the remainder 1 being ignored). By
contrast all numbers in MatLab are stored as double precision floating point so 7/2 means
7.0/2.0 and evaluates to 3.5. A little thought (or knowing how many almost untraceable
programming errors the other convention has generated) will convince you that MatLab
got it right.

Parentheses can be used in MatLab expressions to group expressions and make
the order of evaluation clear

>> 3*(2+2) % addition first

ans = 12

>> (3*2)+2 % multiplication first

ans = 8

4. PUNCTUATING MATLAB 57

When parentheses are not present expressions are evaluated in a strict order of precedence.
Details can be found in the MatLab manual. For example in

>> 3*2+2

ans = 8

the multiplication is performed before the addition. If the order of evaluation is not
completely obvious it is good practice to insert parentheses to make clear the order you
want.

3. Variables

MatLab allows the use of variables (a bit like memories on a calculator) to
which values can be assigned and which can be used in expressions.

>> a = 3 % store the value 3 in a variable called ‘a’

ans = 3

>> b = 4 % store 4 in b

ans = 4

>> a+b % add the value stored in ’a’ to that in ’b’

ans = 7

Variable names can be short, such as x, or meaningful, for example muscle_tension,
according to taste. They cannot contain spaces or any of the special characters (such
as *) used by MatLab. It is best not to use names already in use by MatLab (such
as ans).

Some variables have values pre-assigned. For example pi, an important number
you may have heard of, is preset to π = 3.14159....

You can get information about all the variables you have currently defined using whos.
To clear all the current user definitions type clear all, this also frees up the associated
memory.

4. Punctuating MatLab

Ending a line with a semi-colon (;) suppresses any MatLab output for that com-
mand. This can be used to stop MatLab printing unwanted values of intermediate
expressions in a calculation

>> a = 10; % don’t print ans = 10

>> b = 5; % don’t print ans = 5

>> a/b % do want this result

ans = 2

It is probably a good idea to put a semi-colon after any expression whose output
is irrelevant or which might take too long to display on screen, for example typing
something as innocent as

zeros(100)

prints 10000 zeros to the screen.
Semicolons can be used to separate expressions on the same line

>> a = 3; b = 4; a^b

ans = 81

defines a and b and calculates ab, printing only the final result. Alternatively
commas can be used to separate expressions when you need to see intermediate
results:

58 8. MATLAB: A QUICK TUTORIAL

>> a = 3, b = 4, a^b

a = 3

b = 4

ans = 81

Using a semi-colon by mistake will mean that no output is printed. For example
after typing

>> 3*4+5;

MatLab performs the calculation but does not tell you the answer. This can some-
times be frustrating after a long calculation, however MatLab always stores the
result of the last calculation in a variable called ans so that it can be accessed and
used again

>> 3*4+5; % whoops! forgot to print result

>> ans % saved!

ans = 17

5. Row Vectors in MatLab

MatLab is designed to make calculations involving vectors and matrices easy
For the moment by a row vector we simply mean a list of numbers written in a row;
for example v = (5.0, 4.1, 3.2, 2.3, 1.4) is a row vector with 5 components.

To make a row vector in MatLab type in a list of numbers enclosed in square
brackets. For example

>> vec = [1 2 3 4 5 6]

vec = 1 2 3 4 5 6

creates a 6-component row vector (or 6-vector) called vec. Note that terminology
varies, for example when a vector is thought of as a list it is common to refer to its
entries or elements rather than to its components.

Values of individual components of a vector can be recovered by using bracket
notation: for example the second component of a is a(2), the components of a
vector can be used in calculations as follows

>> a = [4 5 6]; % make 3-component row vector

>> a(2) % second component of a

ans = 5

>> a(1)+a(3) % sum of first and third components

ans = 10

>> a(4) % a has no fourth component - gives Error message

??? Index exceeds matrix dimensions

Indexing (numbering of array elements) in MatLab starts at 1 because it is based on
FORTRAN rather than C or C++ (whose array indices start at 0).
Note that MatLab Vectors do not need to be defined, declared or allocated as in C. They
are allocated on request and memory is reclaimed when the variable is re-assigned. Anyone
who has programmed maths/modelling code in C (or worse still in Pascal or Modula2) will
appreciate how much programming tedium is avoided by an interactive, (almost) typeless
language with dynamic allocation.
This prompts a short explanation for the programming purity police who sniff at the
lack of ‘safety features’ in MatLab: Mathematical modelling in the research community
usually involves relatively small programs which are subject to frequent revision - usually
by their original authors. Often these programs will only be run once in their final form.
Because of this MatLab can afford to ignore the tedious restrictions which are imposed
on programmers by other popular computer languages in order to make it possible for
mediocre programmers to maintain over-elaborate code long past its delete-by date.

MatLab allows arithmetic operations on vectors. For example

5. ROW VECTORS IN MATLAB 59

>> [2 3 4 5]+1 % add 1 to each element

ans = 3 4 5 6

>> [2 3 4 5]*2 % double each element

ans = 4 6 8 10

>> [2 3 4 5]/2 % halve each element

ans = 1 1.5 2 2.5

If vectors are the same length they can be added and subtracted elementwise

>> [2 4 6]+[2 3 4]

ans = 4 7 10

>> [2 4 6]-[2 3 4]

ans = 0 1 2

Multiplication, division and powers have to be specified slightly differently for
vectors than for scalars (ordinary numbers), an extra full stop is needed before the
operation symbol

>> [2 4 6].*[2 3 4] % elementwise product

ans = 4 12 24

>> [2 4 6]./[1 2 3] % elementwise quotient

ans = 2 2 2

>> [1 2 3].^2 % elementwise square

ans = 1 4 9

>> [1 2 3].^[1 2 3] % elementwise power

ans = 1 4 27

Important note: The extra dot specifies that the operation be performed element-
wise, that is, applied to each pair of corresponding elements in order.

MatLab reserves the simpler notation without a dot for the matrix/vector versions of these
operations which will be discussed later.

5.1. Making Row Vectors. Row vectors filled with zeros or ones can be
made using the commands ones and zeros

>> a1 = zeros(1, 6) % one row of 6 zeros

ans = 0 0 0 0 0 0

>> a2 = ones(1, 1000000); % good idea to suppress this output

The are two very useful commands to make vectors with equally spaced ele-
ments. The two-argument colon operator a:b produces unit steps going from a to
b

>> 1:4

ans = 1 2 3 4

>> 3:8

ans = 3 4 5 6 7 8

The three-argument colon a:b:c makes a vector starting at a going in steps of b
to a maximum of c

>> 1:2:10

ans = 1 3 5 7 9 % note 10 is missing

>> 4:-1:1

ans = 4 3 2 1 % use negative steps to go down

The function linspace(a, b, n) makes a vector starting at a, ending at b
with n equally spaced elements

60 8. MATLAB: A QUICK TUTORIAL

>> linspace(0, 1, 5) % 5 elements from 0 to 1

ans = 0 0.25 0.5 0.75 1

>> linspace(1, 5, 5) % same value as 1:5

ans = 1 2 3 4 5

6. Plotting Graphs Using MatLab

Figure 2 MatLab plot of the function y = x2.

Suppose we want to plot the graph of y = x2 over the range 0 ≤ x ≤ 5. To
do this by hand we would select a few values for x in the given range, calculate
the corresponding y’s by squaring, then plot these points and draw a smooth curve
through them. The procedure in MatLab is very similar.

First make a vector of equally spaced x values using the colon operator

>> x = 0:5

ans = 0 1 2 3 4 5

then square all these values to get the corresponding y-values

>> y = x.^2 % note the elementwise .^

ans = 0 1 4 9 16 25

To plot y as a function of x we use the plot command

>> plot(x, y)

A figure window will appears containing the graph shown in Figure 2.
Note that MatLab does not draw a smooth curve through the plotted points,

it simply joins them up using straight lines. To get a smoother curve we need to
plot many points, though tedious by hand, this is straightforward using MatLab:

>> x = linspace(0, 5, 100); % 100 equally space points

>> y = x.^2;

>> plot(x, y);

(note the use of semicolons to suppress output of long intermediate results).
There are many options to alter the way data is plotted. Figure 3 was produced

by the following code

>> x = -5:5; y = x.^2;

>> % plot red graph and overlay green circles

>> plot(x, y, ’r’, x, y, ’go’)

6. PLOTTING GRAPHS USING MATLAB 61

Figure 3 A more elaborate MatLab plot of y = x2.

(for more information about plot options type help plot).

Figure 4 A log-log plot of y = x4 gives a straight line.

Sometimes it is useful to plot graphs using logarithmic axes (for example when a positive
variable varies over a very large range, or to recognise special relationships such as power
laws). MatLab provides special plot functions for this purpose:

>> x = linspace(1, 10, 100); y = x.^4;

>> figure(1); plot(x, y) % usual plot

>> figure(2); semilogx(x, y) % log scale on x-axis

>> figure(3); semilogy(x, y) % log scale on y-axis

>> figure(4); loglog(x, y) % log scale on both axes

the last line produces the log-log plot shown in Figure 4.

A shortened form of the plot command takes just one argument y, in this case
the values on the x-axis are the data indices (1, 2, 3, 4, . . .) so that the following plot
commands are equivalent:

>> plot([7 6 5 6 7]);

>> plot([1 2 3 4 5], [7 6 5 6 7]);

Pieces of text are called strings and are enclosed in single quotes to stop MatLab
trying to evaluate them. Text information can be added to a graph in various ways,
for example

>> title(’Ocular Muscle Length-Tension Curve’); % Add text as title

>> xlabel(’length/mm’); % label for x-axis

>> ylabel(’tension/N’); % label for y-axis

62 8. MATLAB: A QUICK TUTORIAL

>> grid % add grid lines

If a graph is worth saving or printing always give it a title and label the axes. This
is a matter of personal hygiene for scientists.

Matlab text strings are enclosed in single quotes unlike C. They are are actually vectors
of ASCII code numbers for the individual characters. MatLab flags them to indicate that
they must be output as text strings, but they can be also be used in arithmetic expressions,
just like other vectors:

>> ’abcd’+0

97 98 99 100 % gives ascii codes for a b c d

Multiple plots on the same axes can be produced in many ways. One way is to
prevent MatLab from clearing the old plot before drawing the new using hold

>> x = linspace(0, 1, 100);

>> plot(x, x.^2, ’r’); % plot x-squared in red

>> hold on % hold figure

>> plot(x, x.^3, ’g’); % overlay plot of x-cubed in green

>> hold off % release figure

Alternatively plot can be given multiple plot lists. In this case an explanatory
legend can be attached

>> plot(x, x.^2, ’r’, x, x.^3, ’g’); % same effect as above

>> legend(’square’, ’cube’); % labels for graphs

The axis limits for a plot are chosen automatically so that all the data points
given will fit. The limits can be set manually using the function axis([xmin xmax ymin ymax]).
This command can be used to make a plot more presentable, force different plots
to have the same axes, or to zoom in on part of a plot.

7. Script M-Files

Typing multi-line commands into MatLab without making mistakes can be
tedious. Scripts allow multiple commands to be edited and saved in a file which
will then be run exactly as if they had been typed in directly. Scripts always have
names with a .m extension, such as foo.m.

Choose New M-File from the File menu. A simple text-editor window will
appear into which you can type the following commands

x = linspace(0, 12, 100);

y = sin(x);

plot(x, y);

Using Save-as on the File menu put the file either into public space, or into
your own folder, with a name ending in .m such as example.m (do not use spaces
in the filename). In your MatLab command window you can now type the filename
(without the .m)

>> example

and the plot will appear.

8. THE MATLAB FOR-LOOP 63

Scripts behave as though the commands had been typed into MatLab directly, so variables
used in the script (such as x and y in the example) are still defined when it terminates, and
can be used in subsequent commands, and values of variables previously defined outside
the script can be used without passing them as arguments. Because of this scripts are
often regarded as dangerous, and later we will learn to use function M-files to avoid these
problems. However the extra access to variables given by scripts is often very useful,
especially during code development.
MatLab is well adapted to a variety of programming styles including structured-imperative,
functional, and even object oriented styles. This leaves the choice of programming style
where it should be, in the hands of the programmer.

8. The MatLab for-Loop

A loop structure allows commands to be evaluated repeatedly. The general
form of the MatLab for loop is

for i = list-of-values

do-this

do-that

do-t’other

...

end

This tells MatLab to repeat all the commands between the for-line and the end-
statement using successive values of i from the list-of-values. The indentation
of the lines between for and end is not mandatory, but helps with clarity and is
regarded as good style.

Many of you will have met similar loop-control structures in other languages,
however if any of the examples below are unclear ask for help.

To get MatLab to print hello once we can issue the display command

>> disp(’hello’)

hello

To print hello 100 times type in these three lines of code

>> for i = 1:100

disp(’hello’)

end % MatLab does nothing till it sees this end statement

Multi-line structures like this are often entered on a single line as

>> for i = 1:100, disp(’hello’), end

with the commands separated by commas.

The following examples require more typing and should be run using a script
M-file.

Find the sum of the numbers from 21 to 506:

tot = 0; % this will store successive values of the sum

for i = 21:506 % make the list of numbers to be added

tot = tot + i; % add in latest value of i

end % repeat with new i until end of list

disp(tot) % display the total

(why was the name tot used rather than the more obvious sum?).
Print all multiples of 3 less than 50

for i = 3:3:50 % numbers starting at 3 in steps of 3 up to 50

disp(i); % print latest value of i

end % repeat with new i until end of list

64 8. MATLAB: A QUICK TUTORIAL

9. MatLab Functions

We have already met some MatLab functions, For example linspace and plot.
Another example is sum, which adds up all the elements in a vector

>> sum([1 2 3 4])

ans = 10

MatLab has many built-in mathematical functions such as the trigonometric func-
tions sin, cos and tan and logarithms and exponentials, log and exp. It has
functions for statistics such as mean and std to calculate mean and standard devi-
ation. The MatLab toolboxes contain thousands of functions for more specialised
applications.

Interpreted languages like MatLab are usually slower than compiled languages
such as C. However many MatLab applications run nearly as fast as optimal C-
code. This is because most built-in functions and operations such as +, -, sum,
etc. are in fact compiled functions written in C. MatLab calls code using these fast
constructs ‘vectorised’ (misleadingly since it suggests parallel implementation). The
availability of fast code in an interpreted environment is one of the main advantages
MatLab has over competitors such as Mathematica.

Chunks of code can be timed using tic and toc. Try comparing an inter-
preted loop structure with equivalent vectorised code by running the script below
substituting various values of n

n = 10000;

tic % start timer

tot = 0;

for i = 1:n;

tot = tot+i; % sum numbers 1 to n using for-loop

end

toc % end timer and print loop time

tic % re-start timer

tot = sum(1:n); % sum numbers 1 to n using built in function

toc % end timer and print vectorised time

(why does the vectorised code show increased benefit for larger n?).

Exercises

When possible evaluate expressions by hand before checking the answers in
MatLab. Don’t worry if you have not met some of the ideas - just ask for help.

(1) Evaluate

1+(2*3) 4/(2*2)

(4/2)*2 3^(1+2)

(2) Evaluate

1+2*3 4/2*2 8/4/2

1+2/4 2*2^3 2^2/3

Try to determine in what order MatLab peformed the operations.
(3) Explain and evaluate the code segment below (sqrt(x) is the square root√

x)

EXERCISES 65

o = 3 ; a = 4;

H = sqrt(o^2+a^2)

A = o*a/2

(4) Create the vectors x = [3 1 4 1 5 9 2 6 5], y = [1 2 3] and evalu-
ate

x(6)/y(3)

x(1)^y(2)

x(10)

[x(1) x(2) x(3)].*y

(5) Make 10 linearly space values between 50 and 51 using linspace. Why
is this easier than using the colon operator?

(6) Plot graphs of the following functions
(a) y = x3 for 0 ≤ x ≤ 1
(b) a = sin t for 0 ≤ t ≤ 10π (use the MatLab variable pi and built in

function sin)
(c) y = ex for −3 ≤ t ≤ 3 (to get ex use the built in function exp(x))

(7) Plot y = x2 for 0 ≤ x ≤ 1 and overlay a plot of y = 1 − x using hold.
How can the plot be used to find an approximate solution of x2 = 1− x?
Find such a solution and check that it works.

(8) Guess what rand does by plotting its output as shown below

r = rand(100, 1);

plot(r, ’go’);

(9) For variables x1, . . . , xM , y1, . . . , yN use summation notation to write
down (including summation limits)
(a) the sum of squares of the x’s
(b) the sum of products of the xi’s and their indices i.
(c) the sum of all products of the xi’s and the squares of the yj ’s.

(10) Write a script to sum the cubes of numbers from 1 to 1000 using a for
loop. Check the result using sum.

(11) Calculate
∑3

i=1

∑2
j=1 ij3.

(12) Suppose
∑

xi = 0. What is
∑

xiyj?
(13) Why is 2

∑
xi =

∏
2xi ?

(14) Run the MatLab demo to see some other stuff.

66 8. MATLAB: A QUICK TUTORIAL

10. More Maths and MatLab

In this chapter we will learn some more MatLab syntax. and then look at some
terminology and definitions associated with functions of one and two variables.

11. Function M-Files

The MatLab built-in function sum evaluates and returns the sum of a list of
numbers:

>> x = [1 2 3 4]; s = sum(x)

s = 10

The vector x is called the input or argument of the function sum, which returns the
sum of the elements of the vector as its output or value.

We can write our own functions to perform calculations and return values.
Open a new M-File containing the code

function s = sumsq(x)

s = 0; % initialise s to zero

n = length(x); % get length of list

for i = 1:n % i steps from 1 up to n

s = s+x(i)^2 % the square of each x(i) is added into s

end

and save it as sumsq.m.
This function calculates the sum of the squares of the elements of the input

vector. The first line of the M-file specifies that the file sumsq.m contains a function
definition (as opposed to a script), that the function take one input argument (to
be called x) and that it returns one output value (to be called s. The remaining
lines specify how s is to be calculated from x.

A function you have defined in this way can then be called from the MatLab
session just like a built in function

>> a = [1 2 3 4]; tot = sumsq(a)

tot = 30

Note that when calling the function we can use any names we wish for the argument
and returned value.

Variables used inside functions are not available for use outside the function, and those
defined outside are not available inside the script (even if they have the same name). This
means that programming using functions is safer than programming with scripts, since the
correctness of a function is not dependent on the correctness of the program in which it is
embedded. Since in addition MatLab functions cannot modify their arguments (without
tricky programming using the foreign function interface), MatLab is to some extent a
functional language, which earns it Brownie points with purists.

MatLab functions can have any number of inputs. For example we might define
a new plot function with two arguments

function fancyplot(x, y)

figure(1); plot(x, y, ’r’, x, y, ’go’);

which plots data into figure window 1 as a continuous red curve with the data
points highlighted by green circles. This function has two inputs and no outputs.

Functions can also have multiple outputs. For example some simple descriptive
statistics can be recovered by the function

function [m, s] = stats(x)

n = length(x); % number of elements of vector x

m = sum(x)/n; % mean

12. ELEMENTWISE FUNCTIONS 67

s = sqrt(sum((x-m).^2)/n); % standard deviation

which has one input, a data vector, and returns two values, the mean and standard
deviation of the data. Note the very simple syntax for specifying that two values
are returned by the function.

When a function returns multiple values not all the outputs need to be assigned.
For example the function stats can be called in three ways

>> x = [1 -1]; % very simple input

>> [m, s] = stats(x) % (1) return two values and assign to m and s

m = 0

s = 1

>> m = stats(x) % (2) return one value and assign to m

m = 0

>> stats(x) % (3) return no value (but set ans)

ans = 0

Documenting code is tedious but essential. MatLab has a nice way of including help
information in functions which makes it instantly accessible to users. If we include a
continuous block of comments immediately after the function declaration then typing
help function-name in the MatLab session will print out the comment block, for exam-
ple the helpful comments in

function [m, s] = stats(x)

% function [m, s] = stats(x)

% Calculates mean and standard deviation

% x = input data vector

% m = data mean

% s = data standard deviation

n = length(x); m = sum(x)/n; s = sqrt(sum((x-m).^2)/n);

can be recovered by typing

>> help stats

% function [m, s] = stats(x)

% Calculates mean and standard deviation

% x = input data vector

% m = data mean

% s = data standard deviation

I like to include in the help comment a copy of the function declaration (which shows how
to call the function), a short description of the computation it performs, and a description
of the format of the input and output arguments.

12. Elementwise Functions

If MatLab code for a function of with scalar inputs is written carefully it can
be used to calculate outputs corresponding to a vector of inputs. For example the
implementation

function y = fun(x)

y = 1+x^2;

of y = 1 + x2 works OK for single inputs

>> fun(3)

ans = 10

but fails if we supply a list of inputs

>> fun([0 1 2 3])

Error !***???!

68 8. MATLAB: A QUICK TUTORIAL

Howver a small change to the code makes it work,

function y = fun(x)

y = 1+x.^2;

we just needed an element-wise square inside the function. Now our function works
element-wise

>> fun([0 1 2 3])

ans = [1 2 5 10]

just like built-in functions such as sin.

13. The MatLab if Statement

The if statement allows certain actions to be performed only if associated
conditions are satisfied. It has the general form

if condition_1

action__1

elseif condition__2

action__2

...

elseif condition__N

action__N

else

another_action

end

(the else option need not be present). For example

if pi < 22/7

disp(’pi < 22/7’)

else

disp(’pi >= 22/7’)

end

will check whether π is bigger or smaller than the common approximation 22/7 and
display the result.

We can simulate the tossing of a coin using the MatLab random number gener-
ator rand which returns a random number in the range 0 to 1 and the if statement.
Half the time this number will be less than 0.5 and half greater. We can make a
list of 100 simulated coin tosses with the following code

tosses = []; % empty list

for i = 1:100

r = rand(1);

if r < 0.5

tosses(i) = 0; % heads

else

tosses(i) = 1; % tails

end

end

(why does sum(tosses) tell us how many tosses came out tails). Random (strictly
speaking pseudo-random) data generated in this way is basic to the computational
technique known as Monte-Carlo simulation.

15. MATRICES IN MATLAB 69

There is a fast vectorised version of the code above. We can make 100 random numbers
directly using r = rand(1, 100). Simulated coin tosses can then be constructed using
tosses = (r $>$ 0.5). This produces a bit-vector (vector of noughts and ones) with zeros
where r > 0.5 is false and ones where it is true. Many potentially slow MatLab for-if
combinations can be avoided using logical operations and bit-vectors in this way.

14. One-to-one Functions and their Inverses

A function is said to be one-to-one (1-1) if any given output is associated with
just one input value. This property can depend on the domain of the function.
For example f(x) = x2 is 1-1 on the domain 0 ≤ x ≤ ∞ because no two positive
numbers have the same square. However on the domain −∞ ≤ x ≤ ∞ it is many-
to-one since, for example 2 and −2 both have the same square 4 = (−2)2 = 22.

When a function f : x → y is 1-1 it has an inverse function called f−1. This
associates the outputs with the unique inputs to which they correspond f−1 :
y− > x. The inverse of f(x) = x2 on the domain 0 ≤ x ≤ ∞ where it is 1-1 is
f−1(x) =

√
x.

Finding inverses of functions is important. One approach to modeling cognition
is to present it as an inverse problem. Our sense organs take the surrounding world
as input, transform it into nerve impulses, and send it to the brain as output. The
the task of the brain is to invert this process and recover the useful aspects of the
structure of the world from the nerve impulses. Much computational research uses
this paradigm, for example the traditional AI approach to vision was thoroughly
re-constructionist. There are other important approaches, for example research
which trains a generic neural net to perform a range of tasks given some form of
input data is behaviourist in style.

15. Matrices in MatLab

A matrix is a rectangular array of numbers. In MatLab matrices can be con-
structed by specifying the elements of the matrix, enclosed in square brackets, the
rows being separated by semi-colons

>> mat = [1 2 3; 4 5 6; 7 8 9]

ans = 1 2 3

4 5 6

7 8 9

A matrix with m rows and n columns is called an m × n matrix. The element in
the i-the row and j-the column of a matrix can be accessed as m(i, j)

>> mat(2, 3)

ans = 6

In mathematical work we will usually use the subscript notation Mij for the (i, j)-th
element of a matrix M .

All the arithmetic operations can be applied to matrices as well as vectors, for
example

>> mat.^2 % square all the elements of mat

ans = 1 4 9

16 25 36

49 64 81

A column vector is a matrix with only one column (an m× 1 matrix)

>> v = [1; 2; 3]

ans = 1

2

70 8. MATLAB: A QUICK TUTORIAL

3

The row vectors we have already met are 1× n matrices.
Matrices whose elements are all the same can be constructed using zeros and

ones

>> z = zeros(2, 3) % 2 by 3 of zeros

z = 0 0 0

0 0 0

>> a = ones(1, 4) % 1 by 4 of ones

z = 1 1 1 1

>> a = 4.5*ones(2, 2) % 2 by 2 of 4.5’s

a = 4.5 4.5

4.5 4.5

Suppose we want to perform some operation on every element of a matrix. The
operation will have to be performed on the element in each column j of a given row
for every row i. Such a sequence of operations can be specified by a nested for-loop.
The following code prints every element in a matrix A.

[m, n] = size(A); % returns two values - no. of rows m, and no. of cols n

for i = 1:m % for each row

for j = 1:n % for each col

disp(A(i, j)) % display that element

end

end

Note the use of indentation to clarify the structure of the nested loop.

16. Functions of Two Variables

A function of two variables is a rule that associates an output value with two
input values

f : (x, y) → z

or z = f(x, y). Such functions will often be presented as formulae such as

z = x2 + y2

which show how to calculate the output z from x and y.
A matrix can be thought of as a two dimensional look-up table for the function

associating the input pair (i, j) with the element in the i-th row and j-th column
of a matrix

(i, j) → Mij

17. Visualising Functions of Two Variables

If we use x and y as coordinates in the plane, and interpret z as height above
that plane, a formula like z = x2 + y2 defines a surface. Plotting this surface is a
useful way to present a function of two variables visually.

We want to specify the heights z at a number of points x, y. It is simplest if
these points form a grid. We make such a grid by specifying the spacing we want
in x and y then using the function meshgrid to make the grid. This is easiest to
explain using an example

>> x0 = linspace(-2, 2, 5) % 5 values from -2 to 2

x0 = -2 -1 0 1 2

>> y0 = linspace(-1, 1, 3) % 3 values from -1 to 1

y0 = -1 0 1

17. VISUALISING FUNCTIONS OF TWO VARIABLES 71

>> [x, y] = meshgrid(x0, y0) % make mesh with given spacing

x = -2 -1 0 1 2

-2 -1 0 1 2

-2 -1 0 1 2

y = -1 -1 -1 -1 -1

0 0 0 0 0

1 1 1 1 1

The result is two matrices of the same dimensions, one varying only along its rows,
one down its columns. Each matrix specifies either the x or y coordinates of points
in a 3×5 grid. The associated height z can be calculated by translating the formula
z = x2 + y2 into MatLab

Figure 5 A simple mesh plot of 3D data.

>> z = x.^2+y.^2 % dot means elementwise

z = 5 2 1 2 5

4 1 0 1 4

5 2 1 2 5

The surface can then be plotted using

>> mesh(x, y, z); % draw surface as a wire mesh

to give Figure 5.
Figure 6 shows the more complex function

72 8. MATLAB: A QUICK TUTORIAL

Figure 6 A fine mesh plot of the function z = sin(y + sinx)

z = sin(sin(x) + y)

plotted on a finer grid using the following script

l = linspace(-10, 10, 50);

[x, y] = meshgrid(l, l); % square grid with same x and y spacing

z = sin(sin(x)+y);

mesh(x, y, z);

The surface is drawn from a default view position. This can be changed using the command
view(az, el) where az and el specify the view position in terms of its azimuth and elevation
angles in degrees. Type help view for more information.

Rather than using mesh we can fill in the surface using

surf(x, y, z);

or using a lighting model

surfl(x, y, z); shading interp; colormap(pink)

The colour scheme used to shade the surface can be altered by changing the colour-
map. This changes the colour associated with a given z value, try

>> colormap(gray);

>> colormap(hot);

>> colormap(hsv);

Surface plots are attractive for visualisation, but the view chosen tends to
distort the presentation of the data. A pseudo-colour plot presents the information
as if viewed from above, with z values indicated, not by height, but by colour. Try

pcolor(x, y, z);

Another approach is to draw curves of constant z-value (these are exactly anal-
ogous to contour lines of constant height on a map). Figure 7 shows a contour plot
for the function in Figure 6

17. VISUALISING FUNCTIONS OF TWO VARIABLES 73

Figure 7 A contour plot of the function z = sin(y + sinx)

contour(x, y, z, ’k’); % uses all black (’k’) contours

The contour lines are widely spaced where the function value changes slowly, and
closely spaced where it changes quickly (steep surface).

