
BOOSTED DECISION TREES, A POWERFUL EVENT CLASSIFIER

BYRON P. ROEA, HAI-JUN YANGA, AND JI ZHUB

A Department of Physics, B Department of Statistics, University of Michigan,

450 Church St., Ann Arbor, MI, 48109-1040

e-mail: byronroe@umich.edu

Boosted decision trees are compared with neural nets and various decision tree methods using the MiniBooNE exper-
iment as a test bed. A discussion of methods for pruning variables and for increasing the speed of convergence are
given.

1 Decision Trees and Boosting

Consider the problem of classification of events be-

tween signal and background, given a number of par-

ticle identification (PID) variables. A decision tree

is a sequence of binary splits of the data. To train

the tree a set of known training events is used. The

results are measured using a separate set of known

testing events. Consider all of the data to be on

one node. The best PID variable and best place on

that variable to split the data into separate signal

and background is found. There are then two nodes.

The process is repeated on these new nodes and is

continued until a given number of final nodes (called

“leaves”) are obtained, or until all leaves are pure or

until a node has too few events.

There are several popular criteria to determine

the best PID variable and best place on which to split

a node. The gini criterion is used here. Suppose

that event i has weight Wi. The purity P of a node

is defined as the weight of signal events on the node

divided by the total weight of events on that node.

For a given node: gini = P (1 − P)
∑

i Wi. gini is

zero for P = 1 or P = 0. The best split is chosen

as the one which minimizes ginileft + giniright. The

next node to split is chosen by finding that node

whose splitting maximizes the change in gini. In this

way a decision tree is built. Leaves with P ≥ 0.5 are

signal leaves and the rest are background leaves.

Decision trees are powerful, but unstable. A

small change in the training data can produce a

large change in the tree. This is remedied by the

use of boosting. For boosting, the training events

which were misclassified (a signal event fell on a

background leaf or vice versa) have their weights in-

creased (boosted), and a new tree is formed. This

procedure is then repeated for the new tree. In this

way many trees are built up. The score from the mth

individual tree Tm is taken as +1 if the event falls

on a signal leaf and −1 if the event falls on a back-

ground leaf. The final score is taken as a weighted

sum of the scores of the individual leaves.

Two methods for boosting are considered here.

The first is called AdaBoost. Define errm = weight

misclassified/total weight for tree m. Let αm =

β log [(1 − errm)/errm], where β is a constant. In

the statistical literature β has been taken as one,

but for the MiniBooNE experiment, β = 0.5 has

been found to be the optimum value. The misclassi-

fied events have their weight multiplied by eαm . The

weights are then renormalized so the sum of all of

the training event weights is one. The final score is

T =
∑Ntree

m=1
αmTm.

The second method of boosting considered here

is called ε-boost or, sometimes, shrinkage. Misclassi-

fied events have their weight multiplied by e2ε, where

ε is a constant. For the MiniBooNE experiment,

ε = 0.03 has been optimum. (The results vary only

mildly as β or ε are changed a bit.) The final score

is T =
∑Ntree

m=1
εTm.

ε-boost changes weights a little at a time, while

AdaBoost can be shown to try to optimize each

change in weights to minimize e−yT where T is

the score and y is +1 for a signal event and −1

for a background event. The optimum value is

T = log prob/(1 − prob), where prob is the proba-

bility that y = 1, given the observed PID variables.

In practice, for MiniBooNE, the two boosting meth-

ods have performed almost equally well. Boosting is

described as using many weak classifiers to build a

strong classifier. This is seen in Figure 1. After the

first few trees, the misclassification fraction for an

individual tree is above 40%.

In the MiniBooNE experiment some hundreds

of possible PID variables have been suggested. The

most powerful of these have been selected by accept-

1

2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

un-weighted misclassified event rate
weighted misclassified event rate, errm

αm = β*ln((1-errm)/errm), β=0.5

Number of Tree Iterations

er
r m

, α
m

Figure 1. The unweighted, weighted misclassified event rate
(errm), and αm versus the number of tree iterations for Ad-
aBoost with β = 0.5 and signal purity threshold value of 50%.

ing those which are used most often as splitting vari-

ables. Some care needs to be taken as sometimes

a variable will appear unimportant for the first few

trees, but then become important for later trees.

Current MiniBooNE boosting trees have 80-100 PID

variables. Use of more variables tends to slightly de-

grade the performance, probably because all of the

useful information is already in the previous vari-

ables and noise without additional signal is being

added. The performance has been examined varying

the number of trees and the number of leaves/tree.

This is shown in Figures 2. Here, relative ratio is con-

stant × fraction of background kept/fraction of signal

kept for a given signal efficiency. (Smaller is better!)

Optimum results are obtained for MiniBooNE with

about 1000 trees and with 45 leaves/tree. Different

experiments should optimize these values for their

particular data sets.

2 Tests of Boosting with Other

Classification Methods

Boosting was compared with artificial neural nets

(ANN), which the MiniBooNE collaboration had

used previously. For Figure 3 only, the relative ra-

tio is redefined as the fraction of background kept

by ANN to that for boosting for a given fraction of

signal events being kept. (Larger is better for boost-

ing!) It is seen that boosting is better than ANN by

a factor of 1.2-2 for MiniBooNE data.

AdaBoost and ε-boost were compared with var-

ious other similar methods. Space does not permit a

description of these methods; Table 1 will be of most

use to those already familiar with them.

It is seen that Adaboost, ε-boost, ε-LogitBoost,

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

20 30 40 50 60 70 80

Signal Efficiency (%)

R
el

at
iv

e
R

at
io

8 leaves

20 leaves

45 leaves

100 leaves

AdaBoost(β=0.5, 1000 trees)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

20 30 40 50 60 70 80

Signal Efficiency (%)

R
el

at
iv

e
R

at
io

100 trees

200 trees

500 trees

800 trees

1000 trees

AdaBoost(β=0.5, 45 leaves)

Figure 2. Top: tuning the number of leaves when using 1000
trees. Bottom: tuning the number of trees when using 45
leaves.

Boosting Parameters Rel. ratios
Algorithms β,ε (Nlv ,Ntr) 50% sig. eff.

AdaBoost 0.5 (45,1000) 0.62

AdaBoost 0.8 (45,1000) 0.62

ε-Boost 0.03 (45,1000) 0.58

AdaBoost (b=0.5) 0.5 (45,1000) 0.60

ε-Boost (b=0.5) 0.03 (45,1000) 0.58

ε-LogitBoost 0.01 (45,1000) 0.61

ε-HingeBoost 0.01 (30,1000) 0.86

LogitBoost 0.1 (45,150) 0.62

Real AdaBoost (45,1000) 0.69

Gentle AdaBoost (45,1000) 0.67

Random Forests(RF) (400,1000) 0.85

AdaBoosted RF 0.5 (100,1000) 0.66

Table 1. Relative error ratio versus signal efficiency for various
boosting algorithms using MiniBooNE data. Differences up
to about 0.03 are largely statistical. b=0.5 means the smooth
scoring function described in Section 3.

3

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

30 40 50 60 70 80

a)

R
el

at
iv

e
R

at
io

νe selection efficiency (%)

1

1.2

1.4

1.6

1.8

2

2.2

30 40 50 60 70 80

b)

R
el

at
iv

e
R

at
io

νe selection efficiency (%)

Figure 3. Comparison of ANN and AdaBoost performance
for test samples. Relative ratio (defined as the number of
background events kept for ANN divided by the number of
background events kept for AdaBoost) versus the intrinsic νe

charged current quasi-elastic event selection efficiency. a) All
kinds of backgrounds are combined for the training against the
signal. Dots show the relative ratios for 21 training variables
and boxes show them for 52 training variables. b) AdaBoost
trained by signal and neutral current π0 background. Dots
show the relative ratios for 22 training variables and boxes
show them for 52 training variables. All error bars shown in
the figures are for Monte Carlo statistical errors only.

and LogitBoost performed similarly. The Random

Forest method uses no boosting, but uses a random

fraction of the training events, chosen with replace-

ment, for each tree and a random fraction of the PID

variables for each node. For the tests in Table 1, all

of the PID variables were used in each node. This op-

tion is also known as “bagging”. Bagging did poorly

compared with AdaBoost, but had performance close

to AdaBoost if boosting was added.

Post-Fitting is an attempt to reweight the trees

when summing tree scores after all the trees are

made. Two post-fitting attempts were made. They

produced only a very modest (few percent), if any,

gain.

For any of these methods, robustness, the resis-

tance to small inaccuracies between data and train-

ing events, is important. In MiniBooNE this is being

done by generating several dozen Monte Carlo event

samples, each with some parameter varied by about

one standard deviation. Individual PID variables

which are strongly sensitive to variation are elimi-

nated from the boosting variables. This procedure is

not yet complete, but the initial results indicate that

the boosting output is then quite robust.

In March 2005, a large change in the detector

optical model was made requiring retuning of the

reconstructions. The networks trained on the old

model were tested on the new versions of the same

variables. For a fixed background contamination of

π0 events, the fraction of signal kept dropped by 8.3%

for boosting and by 21.4% for ANN.

ANN’s tend, in practice, to be quite sensitive to

a number of parameters. The temperature, hidden

layer(s) size, the learning rate, feedback function, · · ·,

must be chosen. If one multiplies one of the PID

variables by two, or interchanges the order of two

variables, or puts a variable in twice, the result is

likely to change. For more than twenty–thirty PID

variables, tuning is quite difficult and improvement

in performance problematic.

For boosting many variables (≈100) can be used.

There are only a few parameters to optimize. The

MiniBooNE experience is that once β, number of

leaves, and number of trees are set, they remain

about the same for all uses of boosting within the

experiment. If a transformation of the PID variables

x is made, y = f(x), such that if x2 > x1, then

y2 > y1, then the results remain identical, as they

depend only on ordering. Interchanging variables or

putting the same one in twice has no effect on the

results.

3 Convergence Speed of Modifications to

the Basic Boosting Algorithm

From Table 1, it is seen that none of the tested op-

tions for boosting proved superior to AdaBoost or

ε-Boost for the MiniBooNE experiment. It is still

possible to examine modifications to see if the com-

puter time for convergence using the training set can

be reduced. Empirically, reducing the correlations

between variables has been found to speed conver-

gence for the MiniBooNE experiment. As seen in

Table 1, Random Forests with boosting does not do

badly and, if optimized further, may become compet-

itive with AdaBoost, while speeding up convergence.

In the method so far described, the score is taken

as +1 if an event falls on a signal leaf and −1 if the

event falls on a background leaf. This means that if

4

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 200 400 600 800 1000

Number of Tree Iterations

R
el

at
iv

e
R

at
io

AdaBoost, 45 leaves, eff=60%

b=0 (step function - standard)

b=0.5 (smooth function)

Figure 4. Performance of AdaBoost with b = 0 (step function)
and b = 0.5 (smooth square root function), β = 0.5, 45 leaves
per tree, versus tree iterations.

the event falls on a leaf with purity P = 0.51 it gets

the same score as if it fell on a leaf with purity 0.91. A

“soft scoring” method can be tried using some func-

tion of the purity. Empirically it was found that if

d = 2P − 1, then Tm = sign(d)|d|b, with b = 0.5

worked reasonably well. The results are shown in

Figure 4. It is seen that the convergence is faster

for soft scoring although the end result is about the

same as the standard method. From testing a num-

ber of samples it appears that, on the average, the

final result is about the same for AdaBoost. There

is a hint that soft scoring might be slightly better

for ε-Boost. Since there seems no disadvantage to

using soft scoring, it should be considered when one

is using boosting in an analysis.

4 Conclusions

Boosting seems very robust. Given enough itera-

tions, AdaBoost or ε-Boost reach an optimum level

of classification which is not bettered by any vari-

ant tried. For the MiniBooNE Monte Carlo samples,

boosting was better than ANN’s in our tests by fac-

tors between 1.2–2. There are ways, such as smooth

scoring, to increase the rate of convergence of the

algorithm.

Several techniques were tried for reducing the

number of variables. Selecting the variables which

were most used as splitting variables seemed to work

as well as any of the other methods tried.

Downloads in FORTRAN or C++ are available

from:

http://www.gallatin.physics.lsa.umich.edu/˜ roe/

References

1. R.E. Schapire “The strength of weak learnabil-

ity”, Machine Learning 5 (2), 197-227 (1990).

First suggested the boosting approach for 3 trees

taking a majority vote.

2. Y. Freund, “Boosting a weak learning algo-

rithm by majority”, Information and Compu-

tation 121 (2), 256-285 (1995) Introduced using

many trees.

3. Y. Freund and R.E. Schapire, “Experiments

with an new boosting algorithm”, Machine

Learning: Proceedings of the Thirteenth Inter-

national Conference, Morgan Kauffman, San-

Francisco, pp.148-156 (1996). Introduced Ad-

aBoost.

4. J. Friedman, T. Hastie, and R. Tibshirani, “Ad-

ditive logistic regression: a statistical view of

boosting”, Annals of Statistics 28 (2), 337-407

(2000). Showed that AdaBoost could be looked

at as successive approximations to a maximum

likelihood solution.

5. T. Hastie, R. Tibshirani, and J. Friedman, “The

Elements of Statistical Learning”, Springer

(2001). Good reference for decision trees and

boosting.

6. B.P. Roe et. al., “Boosted decision trees as an

alternative to artificial neural networks for par-

ticle identification”, NIM A543, pp. 577-584

(2005).

7. Hai-Jun Yang, Byron P. Roe, and Ji Zhu, “Stud-

ies of Boosted Decision Trees for MiniBooNE

Particle Identification”, Physics/0508045, July

2005. Accepted NIM, Sept. 16, 2005.

