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Abstract

This paper analyses the government expenditure multiplier at the zero lower bound (ZLB) in

the presence of quantitative easing (QE), using a tractable New Keynesian model with financial

frictions. We show that sufficiently large exogenous QE can lift the economy off the ZLB, thus

yielding multipliers below one even for a small fiscal stimulus. Pre-commitment to a gradual QE

unwinding further reduces the fiscal stimulus needed to keep multipliers below unity. When QE instead

follows an instrument rule that responds to conventional monetary shortfalls, the multiplier can remain

below one even at the ZLB. This result also holds under an optimally designed, welfare-based QE

policy. Our analysis provides theoretical support for the growing empirical evidence that government

spending multipliers can remain below unity at the ZLB.
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1 Introduction

Macroeconomic theory based on dynamic general equilibrium modeling has long established that the

output multiplier of government expenditure varies significantly depending on the size of the fiscal stimulus

and the extent of monetary policy accommodation (Woodford, 2011). When conventional monetary policy

responds to a fiscal expansion by raising real interest rates, theoretical models suggest that the fiscal

multiplier is below one. By contrast, when monetary policy is constrained, such as when the zero lower

bound (ZLB) on the short-term nominal interest rate is binding, the multiplier is often found to exceed one

and can potentially be quite large, as long as the temporary increase in government spending is sufficiently

small so that the ZLB remains binding. This distinction in the size of the government expenditure

multiplier across the two regimes (away from and at the ZLB) has become widely accepted and has

arguably shaped the policy framework for evaluating the effects of fiscal stimuli in periods of low interest

rates when many central banks maintained policy rates near the ZLB for extended periods (Eggertsson,

2008, 2011; Erceg and Lindé, 2014).

However, this conventional view overlooks that, in practice, central banks can utilise a broad array of

tools to stimulate inflation and output at the ZLB. Among the most prominent of these are large-scale

asset purchases, often referred to as quantitative easing (QE), which became a prominent tool of monetary

policy following the 2007/08 global financial crisis and again during the Covid-19 pandemic, when policy

rates remained near the ZLB for extended periods. This paper reexamines the government expenditure

multiplier at the ZLB in the presence of QE. Our methodological contribution lies in employing an

analytically tractable New Keynesian framework, which allows us to derive closed-form solutions for the

multiplier and to provide a transparent illustration of the effects of QE.

This is an important inquiry because the growing reliance on QE since the late 2000s has led central

bank asset holdings in advanced economies to reach levels unseen since World War II (Bhattarai and

Neely, 2022). At the same time, three strands of the empirical evidence suggest that QE may have a

significant impact on the output multiplier of government expenditure. First, a growing body of empirical

research, both for the United States and internationally, shows that QE is a close substitute for conventional

monetary policy at the ZLB, stimulating output and prices similarly to interest rate cuts (Gambacorta et al.,
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2014; Swanson and Williams, 2014; Weale and Wieladek, 2016; Dahlhaus et al., 2018; Dell’Ariccia et al.,

2018; Swanson, 2018, 2021). This evidence casts doubt on whether the ZLB is, in practice, a binding

constraint for a central bank. Second, evidence from both reduced-form and structural macroeconomic

models suggests that QE may offset the constraints on conventional policy. Debortoli et al. (2020) estimate

a VAR with time-varying coefficients and find that macroeconomic responses in the United States changed

little between the pre-2007/08 crisis period and the ZLB era, coining the ZLB irrelevance hypothesis.

Using a medium-scale dynamic stochastic general equilibrium (DSGE) model, Sims and Wu (2021)

find that output responses to government expenditure shocks are nearly identical on and off the ZLB,

provided QE follows an instrument rule with feedback on output and inflation. Third, the econometric

evidence on the magnitude of the government expenditure multiplier at the ZLB remains, at best, unsettled.

Early studies suggest multipliers above one, but only on impact or in the very short-term (Ramey and

Zubairy, 2018; Miyamoto et al., 2018). More recent work, finds the government expenditure multiplier

to be consistently below one during ZLB periods after accounting for the asymmetric effects of positive

and negative government spending shocks (Barnichon et al., 2022), or when more flexible econometric

methodologies are employed (Inoue et al., 2024).

This paper aims to reconcile theory with empirical evidence. We build on the New Keynesian framework

of Sims et al. (2023), in which financial frictions restrict some households to trading only in long-term

bonds, and financial intermediaries face a binding leverage constraint on their holdings of long-term

bonds. As in Gertler and Karadi (2013), QE affects real quantities and prices because the central

bank purchases long-term bonds from intermediaries, relaxing their constraint and expanding credit to

constrained households. We introduce exogenous government purchases, enabling the analysis of the

multiplier in a way analogous to Woodford (2011), thus preserving analytical tractability and ensuring

closed-form solutions for the government expenditure multiplier and transparency in the effects of QE.

Crucially, our framework nests Woodford (2011) as a special case, allowing direct comparison of fiscal

multipliers with and without QE in the New Keynesian setting.

We first establish how the financial frictions added to the New Keynesian model to make QE effective

influence fiscal transmission away from the ZLB, providing a benchmark useful to evaluate the multiplier

3



at the ZLB. To do so, we compare the multiplier in our New Keynesian model with two reference

frameworks considered in Woodford (2011): a flexible-price equilibrium and a sticky-price model with

a Taylor rule. Under flexible prices, the classical result that government spending crowds out private

consumption holds, but financial frictions in our model attenuate this effect, yielding a multiplier lower

than one, but higher than in the New Keynesian model with flexible prices. In the sticky-price model,

fiscal stimulus raises output and inflation, prompting an interest rate response through the Taylor rule that

dampens aggregate demand. This crowding out of demand is reduced by financial frictions, producing a

multiplier larger than in the canonical New Keynesian model but still below one.

The ZLB is introduced through a perturbation of the zero-inflation perfect-foresight equilibrium in which

the natural real rate turns negative absent policy intervention (following Eggertsson, 2011; Woodford,

2011). We first analyse an exogenous QE intervention, meaning it is independent of the size of the fiscal

stimulus. As in Woodford (2011), the government spending multiplier at the ZLB is state-dependent:

when fiscal stimulus is small, the multiplier exceeds one because constrained monetary policy lowers real

interest rates in response to fiscal expansion; if fiscal stimulus is large enough to lift the economy off the

ZLB, the multiplier falls below one as conventional policy raises the real rate. In our model, however, the

fiscal stimulus required to exit the ZLB declines with the size of QE. Although QE does not affect the

multiplier within each regime, it influences the multiplier through an extensive margin effect by shifting

the threshold for regime switching. By boosting output and prices, an exogenous QE injection enables

exit from the ZLB at lower levels of fiscal stimulus. If the exogenous QE stimulus is sufficiently large, so

that conventional policy is restored, then the output multiplier is below one irrespective of the magnitude

of the fiscal stimulus. Because the size of the central bank’s steady state balance sheet amplifies the

macroeconomic effects of exogenous QE, output multipliers below one become even more likely as the

central bank’s equilibrium asset holdings grow.

We next ask how the path of QE normalisation, as the natural rate returns to its long-run level, shapes

fiscal multipliers at the ZLB. We model normalisation as a credible commitment, made at the onset of

the ZLB episode, to maintain elevated central bank asset holdings with gradual unwinding occurring

probabilistically once the natural rate recovers. In each period after the natural rate returns to its long-
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run level, asset holdings remain elevated with some probability. We show that this commitment raises

expectations of future economic expansion, enhancing the effectiveness of QE at the ZLB. As a result, the

fiscal stimulus required to exit the ZLB declines further. This mirrors the expectation channel of forward

guidance on the nominal interest rate, highlighted by Eggertsson and Woodford (2003) and Eggertsson

et al. (2004). Werning (2011) considers how optimal monetary policy at the ZLB, including forward

guidance, affects the design of fiscal policy. In our paper, we show that commitment to gradual QE

unwinding amplifies the extensive margin effect of QE, implying that persistent expansions of the central

bank’s balance sheet are associated with government spending multipliers below unity.

Next, we study the output multiplier at the ZLB when QE is determined according to an implementable

instrument rule that conditions asset purchases on the shortfall in conventional monetary policy at the ZLB,

defined as the gap between the desired nominal interest rate, which is negative in the face of a sufficiently

adverse natural rate shock, and the ZLB. QE becomes inactive once the economy exits the ZLB, but

substitutes conventional monetary policy while the ZLB remains binding, tightening in response to fiscal

expansions.1 Under such a rule, the extensive margin effect vanishes, but QE affects the government

expenditure multiplier through an intensive margin channel, influencing its magnitude while the ZLB

persists. If the rule-based response of QE to the fiscal stimulus is sufficiently aggressive, the multiplier

can fall below unity even while the ZLB continues to bind. A larger central bank’s steady state balance

sheet amplifies the impact of QE: thus any increase in inflation and output triggered by the fiscal stimulus

prompts a more aggressive QE tightening at the ZLB, leading to a lower government spending multiplier.

This result helps reconcile the theory with empirical findings that government spending multipliers at the

ZLB are often estimated to be below one (Barnichon et al., 2022; Inoue et al., 2024). The response of QE

thus plays a crucial role in shaping the macroeconomic effects of fiscal policy.

Lastly, we analyse the effects of a central bank implementing QE at the ZLB through an optimal policy

rule that minimises a micro-founded welfare function, subject to the Phillips and IS curve constraints. The

central bank’s loss function reflects not only traditional stabilisation objectives (minimising the volatility

of inflation, the output gap, and government expenditure), but also consumption distribution between

1Such a rule is similar to that proposed, for example, in Gertler and Karadi (2011), although in their work the instrument
rule targets credit spreads.

5



borrowers and savers, consistent with prior work emphasising the role of consumption inequality in

optimal policy (e.g., Bilbiie, 2024; Bonciani and Oh, 2025; Wu and Xie, 2025).2 We show that, during

a ZLB episode, the optimal QE policy takes the form of a feedback rule and QE continues to operate

through an intensive margin channel, influencing the magnitude of the multiplier at the ZLB. Optimal QE

is shown to decline with the size of the fiscal stimulus. The optimal QE stimulus also declines the larger

is the size of the central bank balance sheet in normal times. We characterise conditions under which

optimal QE causes the government expenditure multiplier to fall below one even at the ZLB. We argue

that these conditions are satisfied under conventional model calibrations.

Related Literature. The paper contributes to several strands of the literature on stabilisation policy at

the ZLB. First, it speaks to the extensive body of work analyzing government spending multipliers in

New Keynesian models (see, e.g., Christiano et al., 2011; Eggertsson, 2011; Woodford, 2011; Erceg and

Lindé, 2014). This literature has long established two main propositions. First, a sufficiently aggressive,

temporary expansion of fiscal policy can facilitate exit from the ZLB, when implemented alongside

accommodative monetary policy. Second, the output multiplier of government expenditure exceeds unity

when nominal interest rates are constrained at the ZLB. Our paper revisits these results within a setting

where unconventional monetary policy, in the form of QE, plays a central role. We show that whether QE

operates through direct stimulus or expectation channels, the conventional view overstates the size of the

fiscal stimulus required to exit the ZLB. Moreover, if QE responds to the conventional monetary policy

shortfall or depends on a micro-founded optimal rule, the output multiplier of government expenditure

can be lower than unity even while the economy remains at the ZLB.

Second, our work contributes to the literature that uses New Keynesian models with constrained financial

intermediaries to study the role of QE as a monetary policy instrument, (see, e.g., Gertler and Kiyotaki,

2010; Gertler and Karadi, 2011, 2013; Del Negro et al., 2017; Sims and Wu, 2021). We build on the

analytically tractable framework of Sims et al. (2023), which embeds financial frictions and QE in a

2Working with the same model we do, Wu and Xie (2025) also show that the quadratic approximation to the welfare-
theoretical planner’s loss function depends not only on the volatility of the output gap and inflation, but also the cross-sectional
consumption dispersion between Savers and Borrowers. However, contrary to us, their analysis focuses on stabilisation outside
of the ZLB, and they can show that, together, conventional monetary policy and QE eliminate the trade-off between aggregate
stabilisation and redistribution. We show that at the ZLB, optimal QE alone cannot achieve both objectives.
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four-equation New Keynesian model. While prior work has focused on the stabilising effects of QE on

macroeconomic and financial shocks, we shift attention to its interaction with fiscal policy: studying how

the government expenditure multiplier at the ZLB depends on the central bank’s conduct of QE, including

exogenous and rules-based asset purchases, as well as credible commitments on the path of balance sheet

normalization.

Third, our paper relates to recent work on the design of optimal central bank balance sheet policies and

their interaction with fiscal policy and other policy instruments. Corbellini (2024) and Wolf (2025) study

the substitutability between interest rate policy and government transfers. More closely related to our

work, Wu and Xie (2025) study fiscal multipliers in a New Keynesian model with QE, similar to Sims and

Wu (2021) and Sims et al. (2023), but they abstract from the ZLB. Their focus is on how the method of

fiscal financing affects multipliers in a setting without Ricardian equivalence. Bonciani and Oh (2025)

also study optimal QE and forward guidance at the ZLB, using a micro-founded objective function of the

central bank derived from the Sims et al. (2023) model. Like us, they emphasise the trade-off between

stabilisation and redistribution, with the latter dampening optimal QE. In contrast, our paper considers

how optimal QE, as well as announcements about the balance sheet normalization, affects the government

expenditure multiplier. Thus, our paper also relates to a recent literature advocating for the gradual

reduction of central bank balance sheets following large-scale asset purchases (Karadi and Nakov, 2021;

Cantore and Meichtry, 2024; Harrison, 2024). Our focus is on how credible announcements about the path

of balance sheet normalisation affect the output multiplier of government spending during ZLB episodes.

The paper is structured as follows. Section 2 outlines the economic environment and derives the multiplier

under flexible and sticky prices away from the ZLB. Section 3 analyses the government expenditure

multiplier with exogenous QE. Section 4 considers balance sheet normalisation. Sections 5 and 6 study the

multiplier when QE follows, in turn, an instrument rule and an optimal policy rule. Section 7 summarizes

the results and concludes. Additional analytical details are provided in the Appendices.
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2 Model

We work with the four-equation New Keynesian model of Sims et al. (2023). This allows us to analyse

the size of the government spending multiplier analytically, as in Woodford (2011), but in a setting where

unconventional monetary policy can help overcome the ZLB. The model features two types of households,

savers and borrowers, who differ in their degree of patience and access to financial markets, producers

who set prices in a staggered fashion, financial intermediaries, the central bank, and the government.3

Production is organised across three stages: wholesalers hire labour and produce an undifferentiated

wholesale good using a technology linear in employment; monopolistic retailers, ν ∈ [0, 1], purchase the

wholesale good to produce a differentiated intermediate good, y (ν), and set prices subject to nominal

frictions as in Calvo (1983), with θ ∈ (0, 1), the share of firms unable to reset price each period; lastly, a

final good producer aggregates the differentiated intermediate goods to produce the final output, a Dixit

and Stiglitz (1977) composite good, Y =
(∫ 1

0
y (ν)1/ε dν

)ε
, with ε > 1, the elasticity of substitution

across differentiated intermediate varieties.

Patient households (the savers) consume, supply labour, and own equity shares in retail firms and financial

intermediaries. They receive wage income and dividends from both firms and financial intermediaries,

make equity transfers to financial intermediaries, pay taxes in the form of lump sums, and can only

save through short-term, one-period deposits in the financial intermediaries. Savers have separable

flow utility functions over their consumption, C, and employment, N , given by u (C) − v (N) =

C1−1/σ/ (1− 1/σ)−N1+η/ (1 + η), with σ > 0, the elasticity of intertemporal substitution, and η > 0,

the inverse Frisch elasticity of labour supply. Their discount factor is β ∈ (0, 1). Impatient households (the

borrowers) have a lower discount factor than savers, do not earn labour income, and finance consumption

through borrowing and lump sum transfers received from the government. Their flow utility is given by

u
(
Cb
)

=
(
Cb
)1−1/σ

/ (1− 1/σ), with Cb their consumption. Financial markets are segmented and, in

particular, borrowers can only issue long-term nominal bonds.

Financial intermediaries have a lifetime span of one period, with a new intermediary entering the model

3Appendix A provides a more detailed description of the economic environment and the model’s equilibrium conditions.
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each period. The liability side of their balance sheet includes short-term deposits received from savers

and equity injections. The latter includes two components, new equities from savers and equity transfers

from the preceding financial intermediary, corresponding to the stock of outstanding long-term bonds

held previously. On the asset side, there are reserves held with the central bank and long-term bonds.

Financial intermediaries’ holdings of long-term bonds are subject to a binding leverage constraint such

that the value of long bonds held cannot exceed a multiple of the nominal net worth. This is imposed as

an exogenous constraint. Similar to New Keynesian models that include financial intermediation in the

tradition of Gertler and Kiyotaki (2010) and Gertler and Karadi (2011), the binding leverage constraint

could be micro-founded assuming that financial intermediaries may misappropriate funds.

There are two types of monetary policy. Conventional monetary policy changes the short-term nominal

interest rate according to some rule. Unconventional monetary policy, namely QE, changes the size of the

central bank’s balance sheet. This includes long-term bonds on the asset side, interest-bearing reserves on

the liabilities side. QE consists of creating interest-bearing reserves to finance purchases of long-term

bonds issued by the borrowers that sit in the balance sheet of financial intermediaries. The transmission

mechanism of QE to output and inflation includes two channels. When the central bank purchases

long-term bonds, it eases the leverage constraint faced by financial intermediaries, leading to an expansion

in the supply of credit to borrowers, which in turn stimulates aggregate demand.4 Thus expansionary QE

has effects on output and prices equivalent to those of a positive demand shock. At the same time, QE

shifts resources from savers, who supply labour elastically, to borrowers, whose labour supply is inelastic.

Consequently, QE generates a negative wealth effect for savers, reducing wages and real marginal costs in

a manner similar to a favourable credit shock. For this reason QE is less inflationary than conventional

monetary policy, a prediction generally supported by the empirical evidence indicating that, since the

2007/08 financial crisis, the expansion of central bank balance sheets in major advanced economies has

had a weaker and less persistent effect on the price level compared to conventional monetary policy,

see Gambacorta et al. (2014); Swanson (2023).5 Further, in the log-linearised equilibrium, the size of

4The binding leverage constraint induces a positive interest rate spread between long- and short-term bonds. Thus
expansionary QE reduces the (term) spread. The transmission mechanism of QE through spreads has long been formalised in
theoretical models, see (see, e.g., Gertler and Karadi, 2011, 2013; Curdia and Woodford, 2011; Chen et al., 2012; Del Negro
et al., 2017).

5Against this, see Aruoba et al. (2022).
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the steady state central bank’s balance sheet amplifies the macroeconomic effects of QE on output and

inflation.

The government finances an exogenous stream of purchases, G, and transfers to borrowers by levying

lump-sum taxes on savers. As in Woodford (2011), a change in the path of total government expenditure is

assumed to imply a change in the path of lump-sum tax collections to maintain intertemporal government

solvency.6 Final output is purchased for consumption by households and by the government subject to the

aggregate resources constraint, Y = C + Cb +G.

2.1 The aggregate economy

The equilibrium conditions can be approximated around the zero-inflation steady state to derive the Phillips

and IS curves that determine the aggregate dynamics of inflation, πt, and of the output deviation from

its steady state, Ŷt ≡
(
Yt − Y

)
/Y . These curves capture the transmission mechanisms of conventional

monetary policy, which controls the nominal interest rate, it; unconventional monetary policy, measured

as the deviation of QE from its steady state, Q̂Et ≡
(
QEt − QE

)
/QE; and fiscal policy, captured by the

deviation of government consumption from its long-run steady state, expressed as a proportion of the

steady-state output, G̃t ≡
(
Gt −G

)
/Y . In particular, the equations describing the Phillips and IS curves

are given by7

πt = κ
(
Ŷt − ΓG̃t

)
+ βEtπt+1 − ς Q̂Et, (1)

Ŷt − G̃t − ξQ̂Et = Et

(
Ŷt+1 − G̃t+1 − ξQ̂Et+1

)
− ϕ (it − Etπt+1 − rn) . (2)

The parameter κ ≡ λ
(

1
ϕ

+ η
)
> 0 stands for the elasticity of inflation to changes in the output gap,

where λ ≡ (1− θ) (1− θβ) /θ is the elasticity of inflation with respect to marginal cost, and ϕ ≡

(1− g) (1− z)σ > 0 is the intertemporal elasticity of substitution of total household expenditure, with

g ≡ G/Y , the government consumption share of output, and z ≡ Cb/
(
C + Cb

)
, the steady-state share of

6We abstract from inclusion of government bonds for analytical tractability. This is without loss of generality, because the
qualitative effects of QE through government bond purchases mirror those for private bonds, differing only quantitatively by a
constant fraction, as shown in Sims and Wu (2021).

7Appendix A presents the model’s log-linear equilibrium conditions and describes the derivation of the Phillips and IS
curves, equations (1) and (2).
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borrower consumption. The parameter Γ ∈ (0, 1), as shown below, measures the government expenditure

multiplier with flexible prices. Thus, Ŷt − ΓG̃t corresponds to the output gap defined as the the number of

percentage points by which aggregate output exceeds the flexible-price equilibrium level. The parameter

ς ≡ (λ/ϕ) ξ stands for the elasticity of inflation to changes in QE, with ξ ≡ (1− g) z
(
b

cb
/b
)
∈ (0, 1),

the elasticity of private expenditure to changes in QE, which is positively related to the size of the central

bank’s balance sheet in steady state, bcb, as a proportion of the total the steady-state real value of long-term

bonds, b in the economy. Thus, increase of the relative size of the central bank balance sheet amplifies

the impact of QE on output and inflation. The parameter ς enters the Phillips curve with a negative sign

because of the wealth effect exerted by QE on savers described above. The parameter rn ≡ − log β stands

for the short-term real interest rate consistent with a stationary equilibrium, price stability and the absence

of any unconventional monetary policy (so that, Ŷt = 0, πt = 0 and Q̂Et = 0, for all t), which we refer to

as the long-run natural rate of interest. Crucially, all elasticity parameters that determine aggregate output

and inflation, namely κ and ς in the Phillips curve (1) and ξ and ϕ in the IS equation (2), are a function

of z, the degree of financial frictions in the economy. Simply setting z = 0 recovers the canonical New

Keynesian model with government expenditure, used in Woodford (2011) to study the analytics of the

government expenditure multiplier. This is important because it means that Woodford (2011)’s model is

nested in equations (1) and (2) as a special case, thereby providing a useful benchmark against which to

relate our results on the government expenditure multiplier.

Figure 1 highlights our key observation, that motivates this paper: the substitutability between conventional

monetary policy and QE. It is based on a standard calibration of the model in which the ZLB does not

bind and represented by equations (1), (2), a Taylor (1993)-type rule for the nominal rate of interest and

an autoregressive process of order one for QE. We illustrate the response of inflation and output to two

alternative policy shocks each calibrated to raise the output gap by one percent. The first is a conventional

expansionary monetary policy shock (a surprise reduction in the nominal interest rate). The second is an

unanticipated increase in the central bank’s asset purchases (a QE shock). Both output and inflation rise

in response to expansionary shocks from conventional monetary policy and QE.8 These results suggest

8The lower inflation response to the QE shock, compared to the conventional monetary policy shock for the same output
gap increase, indicates that QE is less inflationary.
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Figure 1: Percentage change of output and inflation to an expansionary shock to the interest rate (left panel)
and QE (right panel). Both shocks are calibrated to deliver a one percent increase in the output gap. The
model consists of the Phillips curve (1); the IS curve (2); the interest rate rule it = rn+1.5πt+0.5Ŷt+εi,t,
with εi,t = ρεiεi,t−1 + ui,t; and the QE rule Q̂Et = ρqeQ̂Et−1 + uqe,t. Both uqe,t and ui,t are independent and
identically distributed errors with zero mean and unit variance. The model parameters are calibrated as
follows: θ = 3/4, β = 0.99, η = 2, σ = 1, g = 0.2, z = 0.33, bcb

/b = 0.3.

that, even when the nominal interest rate is constrained by the ZLB, monetary policy remains effective. It

therefore raises questions about the government expenditure multiplier’s divergence between ZLB-binding

and non-binding periods, particularly when QE operates systematically like conventional monetary policy.

The remainder of the paper delves into this issue in detail.

2.2 Multiplier with flexible prices

We first characterise the government expenditure multiplier that is obtained under flexible prices.9 To

do this, we simply make use of the property in the New Keynesian model with Calvo (1983) prices,

that if πt = 0 for all t (strict inflation targeting), then the resulting equilibrium allocations correspond

9Appendix B gives additional details on all analytical results included in this section.
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to the flexible price allocations, as there are no relative price distortions in the absence of inflation. The

consequence of imposing πt = 0 for all t is that, in the absence of QE (with Q̂Et = 0), the flexible-price

equilibrium level of output is determined from the Phillips curve in equation (1) as

Ŷt = ΓG̃t.

Recall that G̃t ≡
(
Gt −G

)
/Y , the change in government expenditure from its long-run level relative

to steady-state output. Thus, under flexible prices, an increase in government expenditure totaling one

percent of GDP raises output by Γ percentage points, the government expenditure multiplier.

To uncover the determinants of Γ, we combine the equilibrium labour supply and market clearing

conditions for the full model. In particular, making use of the labour market equilibrium conditions, we

obtain (
Y − Cb −G

)−1/σ
=

(
ε

ε− 1

)
Y η.

Implicit differentiation in the neighborhood of the steady state yields

Γ ≡ dŶ

dG̃
=
dY

dG
=

1/ϕ

1/ϕ+ η
< 1. (3)

This establishes that, with flexible prices, the government expenditure multiplier is less than unity. One

interesting feature of the result in equation (3) is that the limit of Γ is unity as the share of total consumption

going to borrowers goes to one, z → 1. This is because an increase in aggregate demand caused by higher

government expenditure only generates crowding out through the effect it exerts on employment. But as

z → 1, we have ϕ→ 0, meaning that the intertemporal elasticity of substitution of private expenditure

goes to zero. This happens because only savers undertake intertemporal labour supply substitution, and

aggregate private sector expenditure is no longer crowded out by an increase in government consumption

if their consumption share becomes negligibly small.

Conversely, as z → 0, financial frictions cease to have any bearing on the determination of the equilibrium.

The model then reduces to a standard neoclassical general equilibrium framework with flexible prices and

perfect competition. As a result, the government expenditure multiplier near the steady state becomes

13



Γneoclassical ≡ 1/ (1 + η(1− g)σ). This is the same government expenditure multiplier determined in

Woodford (2011), and represents a lower bound for Γ in (3).

2.3 Multiplier with sticky prices and a Taylor rule

The above result determines the government expenditure multiplier under flexible prices or under a strict

inflation target, such that πt = 0 for all t, thus avoiding any relative price dispersion even with sticky

prices. Next, we study how the distortions caused by staggered-price stickiness influence the size of the

government expenditure multiplier when monetary policy is set following an implementable Taylor-type

rule of the form

it = rn + φππt + φy

(
Ŷt − ΓG̃t

)
, (4)

with φπ > 1 and φy > 0 as in Taylor (1993), and Ŷt − ΓG̃t denoting the welfare relevant output gap.10

For the present, we still assume that the economy is never at the ZLB and there is no QE, so that Q̂Et = 0

for all t. To derive the multiplier, we follow the same steps as in Woodford (2011). Thus, we conjecture a

linear solution for the endogenous variables that takes the form


Ŷt

πt

it − rn

 =


γy

γπ

γi

 G̃t,

and we let government expenditure be serially correlated according to EtG̃t+1 = ρG̃t, with ρ ∈ (0, 1).

We then substitute the conjectured solution in (1), (2) and (4) and employ the method of undetermined

coefficients to obtain γy, γπ, and γu. This yields the government expenditure multiplier under the Taylor

rule, given by

ΓTaylor rule = γy =
1− ρ+ ψΓ

1− ρ+ ψ
< 1, (5)

with ψ ≡ ϕ (φy + κ (φπ − ρ)) / (1− ρβ) > 0. Consequently, Γ < ΓTaylor rule < 1. Thus, the govern-

ment expenditure multiplier when monetary policy is set according to the Taylor rule in (4) is larger than

10Appendix B provides additional analytical details on the multiplier derived in this section.
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that obtained under the strict inflation targeting regime, but is still smaller than one.

This multiplier is analogous to that obtained in Woodford (2011) using a Taylor rule as in (4). It is

higher than under flexible prices, because the Taylor rule allows inflation to increase in response to the

fiscal stimulus; but it is lower than one because the real interest rate rises in response to the increases in

inflation and the output gap. The extent to which the rise of the real interest rate dampens the government

expenditure multiplier depends on the intertemporal elasticity of substitution of private expenditure, ϕ. In

our model, however, this elasticity depends on the share of consumption of borrowers, z. The larger this

share, the smaller is the intertemporal elasticity of substitution, and the smaller is the coefficient ψ. For

this reason, the multiplier is higher than that predicted by the canonical New Keynesian model in a similar

setting with sticky prices and a Taylor rule.11

3 Fiscal policy at the ZLB with exogenous QE

We now describe the conditions under which the economy may encounter the ZLB. Following Eggertsson

(2011) and Woodford (2011), we assume a two-state Markov equilibrium comprised of an initial crisis

state triggered by a large negative shock to the natural interest rate. This requires extending the model to

include a natural real rate shock, δt, so that instead of (2) we now have the following IS equation

Ŷt − G̃t − ξQ̂Et = Et

(
Ŷt+1 − G̃t+1 − ξQ̂Et+1

)
− ϕ (it − Etπt+1 − rn + δt) , (6)

with rnt = rn − δt, the natural real rate at date t.12

In period t there is a sufficiently large shock, δt = δL, such that the natural rate becomes negative,

rnt = rn − δL < 0, and the ZLB constraint is binding in the absence of any fiscal stimulus or QE. Each

period after t there is a probability µ ∈ (0, 1) that the shock persists and the natural rate remains negative,

11As z → 1, the multiplier ΓTaylor rule becomes larger and closer to one. Similarly, the government expenditure multiplier
is larger with a flat Philips curve (small κ).

12The nature of the shock that brings the economy to the ZLB affects the size of the government expenditure multiplier.
Mertens and Ravn (2014) consider sunspot shocks, such as a drop in household confidence, where higher government
expenditure deepens households’ pessimism, thereby dampening the fiscal stimulus effects and yielding multipliers below one
at the ZLB. To align with the canonical New Keynesian literature described above, we instead work with fundamental shocks,
like a rise in households’ preference for future consumption.
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whereas with probability 1− µ the natural real rate returns to its normal value, rnt = rn > 0. We denote

the date at which the natural real rate returns to its normal value as T > t, with T a random variable. Once

this occurs, both monetary and fiscal policies are conducted so that the economy returns immediately to

the perfect foresight steady-state equilibrium, G̃T+s = ŶT+s = πT+s = 0, for all s ≥ 0. The Taylor rule

describing conventional monetary policy is adjusted to explicitly reflect that the short-term interest rate is

constrained by the ZLB with the result that

it = max
{

0, rn + φππt + φy

(
Ŷt − ΓG̃t

)}
. (7)

The model is entirely forward-looking and can yield a unique bounded solution for the endogenous

variables,
(
Ŷt, πt, it

)
during the crisis state, such that

(
Ŷt, πt, it

)
=
(
Y L, πL, iL

)
for all t < T . Of course,

the existence of such an equilibrium hinges on whether solving forward the equilibrium conditions (1),

(6) and (7) yields a unique bounded stationary solution. This is the case as long as the model parameters

satisfy the restriction

R ≡ (1− µ) (1− βµ)− κϕµ > 0, (8)

which places an upper limit on the private sector’s expectation about the duration, 1/ (1− µ), of the

negative interest rate shock.13

The characterisation of the two-state Markov equilibrium is completed by specifying the paths of govern-

ment expenditure and QE, given by

 G̃t

Q̂Et

 =


(
GL ≥ 0, QEL ≥ 0

)′
for t = 0, . . . , T − 1,

(0, 0)′ for t ≥ T ,
(9)

implying that government expenditure and QE are allowed to rise above their perfect-foresight steady-state

equilibrium values while the economy is in the crisis state. In particular, the path of QE in (9) means

that the central bank balance sheet expands only during the crisis state, thereby mirroring central bank

behaviour in major advanced economies following the 2007/08 financial crisis and the Covid-19 pandemic.

13Appendix C provides additional details on all analytical results presented in this section.
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Figure 2: Equilibrium at the ZLB in the absence of fiscal stimulus and QE.

We start by considering the simplest hypothesis for the design of QE in (9). Namely, that the size of the

QE stimulus, QEL > 0, is exogenous, meaning that the amount of QE is independent, in equilibrium, of

the amount of fiscal stimulus.14

Given the equilibrium allocations in the perfect foresight state, we can solve the model backward and

determine the equilibrium allocations while t < T by replacing the paths of government expenditure and

QE in (9) into equations (1) and (6), obtaining the Phillips and IS curves during the crisis state as

πL = κ
(
Y L − ΓGL

)
+ βµπL − ςQEL, (10)

Y L = µY L + (1− µ)GL + (1− µ) ξQEL − ϕ (iL − µπL − rL) , (11)

where rL = rn − δL < 0. As in Woodford (2011), the equilibrium values of output and inflation during

the crisis depend on the extent of any fiscal stimulus undertaken. In our framework, however, these values

also depend on the type of QE policy implemented while the economy is in the crisis state.

Figure 2 illustrates graphically the equilibrium solution to the system of equations (10) and (11)when the

ZLB constraint is binding. According to the the Taylor rule (7), iL = 0. Thus, the IS curve is positively

14Notice that such an exogenous QE rule obtains if, for example, QE is set contingent on the exogenous natural rate shock, δL.
Thus, this is analogous to the assumption in Del Negro et al. (2017) where QE is represented as a function of an exogenous
liquidity shock, and also that in Sims et al. (2023), where QE is represented as a function of an exogenous credit shock.
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sloped in the output-inflation space. Condition (8) ensures that the two lines intersect in the southwest

quadrant of the figure, implying that the economy experiences deflation and output contraction. The

shaded area corresponds to the region in which the ZLB is binding. For a sufficiently large shock, δL, to

the natural real rate, the Phillips and IS curves meet in this region. Using equations (10) and (11), and

imposing iL = 0, we obtain the following equilibrium values for inflation and the output at the ZLB

πL =
1

1− βµ

[
κκrrL + κκgGL + (κκqe − ς) QEL

]
, (12)

Y L − ΓGL = κrrL + κgGL + κqeQEL, (13)

with κr ≡ (1− βµ)ϕ/R, κg ≡ (1− µ) (1− βµ) (1− Γ) /R and κqe ≡ ξ ((1− µ) (1− βµ)− λµ) /R.

Given condition (8) and the fact that Γ < 1 from (3), it is straightforward to veryfy that κr > 0,

κg > 1 − Γ > 0, κqe > ξ > 0 and κκqe − ς > 0. Thus, at the ZLB an increase in either government

expenditure or QE raises both inflation and output. The coefficient κg is independent of bcb, whereas

κqe depend positively on it: the size of the central bank’s steady state balance sheet does not affect the

equilibrium response of output and inflation to government expenditure but enhances the response to QE.

To characterise the conditions under which the economy enters the ZLB, and how a fiscal or QE policy

stimulus may affect them, it is useful to introduce the shadow nominal interest rate, isL. This is defined as

the value to which the nominal interest rate would be set if the ZLB constraint did not exist and negative

interest rates were possible, and is given by 15

isL ≡ rn + φππL + φy
(
Y L − ΓGL

)
. (14)

The advantage of defining the shadow interest rate in equation (14) is that we can now determine the

size of the natural interest rate shock required for the ZLB to be binding. After replacing into (14) the

equilibrium solutions for inflation and output in (12) and (13), and solving for isL = 0 , we find that the

15The term ”shadow interest rate” is typically used in the literature to capture the effective stance of monetary policy when
the interest rate is at the ZLB, but other instruments, such as QE, are used to provide monetary policy stimulus (Krippner,
2013; Wu and Xia, 2016). Our use of the term ”shadow interest rate” is different, describing the interest rate that would be
prescribed by the monetary policy rule if negative interest rates were possible.
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ZLB constraint binds in the neighborhood of GL = QEL = 0 if and only if

δL > rn +

[(
φπκ

1− βµ
+ φy

)
κr
]−1

rn, (15)

or, equivalently, if there is a sufficiently large natural rate shock δL, such that the natural real rate,

rL = rn − δL, is negative in the absence of fiscal and QE stimuli. From the linearity of the system, it

follows that for small policy perturbations (GL ' 0 and QEL ' 0), the ZLB is still be binding, and the

shadow rate (14) is negative. We also know, from (12) and (13), that both government expenditure and

QE raise inflation and the output gap, therefore the shadow rate is increasing in both policy instruments

disL
dGL

> 0, and
disL
dQEL

> 0. (16)

In other words, a sufficiently large fiscal or monetary stimulus can help the economy exit the ZLB.

Next, we consider the size of the government expenditure multiplier when the central bank enacts a QE

programme during the crisis period, t < T , under two possible scenarios: a small stimulus that leaves the

economy at the ZLB; and a large stimulus that brings the economy outside the ZLB.

3.1 Exogenous QE and small stimulus

We first restrict attention to a scenario where the fiscal and QE stimuli are small, GL ' 0 and QEL ' 0,

implying that despite the stimulus the ZLB constraint remains binding. From (13) we see that for a small

fiscal stimulus that leaves the economy at the ZLB during the crisis state the government expenditure

multiplier is given by

ΓZLB benchmark = κg + Γ =
1− µ− ψΓ

1− µ− ψ
> 1, (17)

with ψ = ϕµκ/(1− βµ). The decomposition κg + Γ shows that the magnitude of the multiplier while the

economy remains inside the ZLB depends neither on the extent of the exogenous QE injection nor on the

size of the central bank’s steady state balance sheet, being determined entirely by the elasticity of output

to government expenditure and the flexible price multiplier. The next decomposition helps establish the

sign of the multiplier: given condition (8) and the fact that Γ ∈ (0, 1) from (3), this ZLB multiplier must
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Figure 3: Equilibrium at the ZLB under small and large fiscal and monetary stimuli

be greater than unity, consistently with the conventional view from New Keynesian theory. For this reason,

we take this as a benchmark for the value of the multiplier at the ZLB.

Intuition for why ΓZLB benchmark is less than one, can be obtained directly from the equilibrium solution for

inflation in equation (12), deriving the change in inflation following the fiscal stimulus which is given by

dπL

dGL

=
κ

1− βµ

(
ΓZLB benchmark − Γ

)
> 0.

Thus, as long as the economy remains at the ZLB following the increase in government expenditure, the

real interest rate falls producing a government expenditure multiplier above unity. The effects of a small

government expenditure shock are represented in Figure 3a. When the fiscal stimulus is small, the crisis

state equilibrium is inside the ZLB region, where the IS and Phillips curves are both positively sloped.

The fiscal stimulus increases inflation and, as the economy is in the ZLB region, this causes the real

interest rate to become even more negative, further increasing output.

The size of the benchmark multiplier at the ZLB depends on z, the consumption share of the borrowers.

When this share is large, the multiplier is smaller and approaches unity, with

lim
z→1

ΓZLB benchmark = 1.
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The reason for this is that as z goes to unity, intertemporal substitution becomes less powerful and, thus,

the path of the real interest rate is no longer as important in determining the size of the multiplier. As z

may be interpreted as a measure of liquidity-constrained households, we conclude that at the ZLB the

fiscal multiplier is larger when fewer consumers are liquidity-constrained. This is in contrast to what

happens when the economy is not at the ZLB.

3.2 Exogenous QE and large stimulus

A sufficiently large fiscal stimulus or QE raises the shadow rate above zero, allowing the economy to

exit the ZLB. In this case, the interest rate and the shadow rate coincide for all t < T , and the relevant

IS curve corresponds to that in equation (11) with iL = isL > 0. Making use of equations (10) and (14)

to substitute, in turn, for πL and isL in equation (11), and totally differentiating yields the government

expenditure multiplier

ΓZLB exit =
1− µ+ ψ̃Γ

1− µ+ ψ̃
< 1, (18)

with ψ̃ ≡ ϕ (φy + κ (φπ − µ) / (1− βµ)) > 0.

Two results about the government expenditure multiplier in equation (18) stand out. First, the size of the

multiplier ΓZLB exit is independent of both the extent of the exogenous QE injection that moves the economy

out of the ZLB and the size of the central bank’s steady state balance sheet. Second, the Taylor rule

becomes active again because the economy exits the ZLB. For this reason, expression (18) corresponds

exactly to that of the multiplier ΓTaylor rule in (5), with the probability µ replacing the coefficient that

measures the serial correlation of government expenditure, ρ. Thus, when the fiscal stimulus and QE are

sufficiently large to exit the ZLB, the government expenditure multiplier returns to be less than one. This

is illustrated in Figure 3b. With a sufficiently large stimulus, the new equilibrium is achieved outside

the ZLB region, and the IS equation yields the conventional negative relationship between inflation and

output. An increase in inflation causes the central bank to raise the nominal interest rate enough for the

real interest rate to increase and lower output.

Like the benchmark multiplier, ΓZLB exit also depends on the degree of intertemporal substitution in the

household sector. This time, however, the government expenditure multiplier increases, approaching unity
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as the consumption share of the borrowers becomes larger so that

lim
z→1

ΓZLB exit = 1.

As z goes to unity, the dampening impact of the rise in the real interest rate on the multiplier due to

intertemporal substitution becomes less powerful, so that the multiplier goes to unity.

3.3 State-dependent government expenditure multiplier

We have two possible regimes which are endogenously determined and, in particular, are contingent

on the size of the fiscal and QE stimuli. We are now able to identify which of the two multipliers,

ΓZLB benchmark > 1 and ΓZLB exit < 1, prevails when the economy is in the crisis state and, thus, obtain a

state-dependent characterisation of the government expenditure multiplier.

From (16) we know that a sufficiently large fiscal stimulus, GL, causes the economy to exit the ZLB

regime. Consequently, we can obtain the threshold level, G
TH

, required to exit the ZLB. To do this we

use equations (12) and (13) to substitute for πL and Y L in (14), and solve for the level of GL required to

obtain isL = 0, which yields the government expenditure threshold

G
TH

= −κr
κg
rL −

[
(1− βµ) /κg

φπκ+ φy (1− βµ)

] [
rn +

(
φπ
κκqe − ς
1− βµ

+ φyκ

)
QEL

]
. (19)

Thus, as long as the size of the fiscal stimulus is above the threshold G
TH

, the economy is outside the ZLB

region and the multiplier in the crisis state is ΓZLB exit < 1.

This result has similarities to that of Woodford (2011), in that at the ZLB the government expenditure

multiplier is greater than one only for a sufficiently small fiscal stimulus. However, the threshold G
TH

in

(19) also depends negatively on both the magnitude of the exogenous QE injection, QEL, and the size of

the central bank’s steady state balance sheet, bcb. In other words, the conventional view, which disregards

QE, overstates the size of the fiscal stimulus required to exit the ZLB.

It is even possible to determine a boundary value for the exogenous QE programme required to ensure
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that the government expenditure multiplier in the crisis state is always less than one. Setting G
TH

= 0 and

solving equation (19) for QEL, this threshold level is given by

QE
TH

= −
(
φπ
κκqe − ς
1− βµ

+ φyκ

)−1 [(
φy +

φπκ

1− βµ

)
κrrL + rn

]
> 0. (20)

The sign follows from the term in square brackets being negative due to condition (15). The restriction

required to ensure the ZLB constraint binds in the neighborhood of GL = QEL = 0. Hence, if the

exogenous QE stimulus is ”sufficiently large”, meaning that QEL ≥ QE
TH, then the government expenditure

multiplier in the crisis state is always less than one, irrespective of the size of the fiscal stimulus. The

threshold QE
TH is negatively related to the equilibrium elasticity of inflation to QE, captured by κκqe − ς .

This implies that central banks with relatively large balance sheets require a smaller exogenous QE

injection to exit the ZLB.

To summarize, when QE is set exogenously and the economy is at the ZLB the (local) fiscal multiplier in

the neighborhood of GL = 0 is contingent on the amount of QE, as follows

ΓQE EXO
(
QEL
)
≡ I

(
QEL < QE

TH
)

ΓZLB benchmark +
[
1− I

(
QEL > QE

TH
)]

ΓZLB exit, (21)

where I (•) denotes an indicator function that determines whether the economy is in the ZLB or not.

According to (21), exogenous QE does not affect the value of the government expenditure multiplier

within each regime (at or away from the ZLB). It shifts the threshold at which the economy transitions

between regimes. In other words, exogenous QE influences the multiplier through an extensive margin

effect, by altering the fiscal stance required to induce regime switching. Likewise, the size of the central

bank’s steady state balance sheet has only impact on the extensive margin (reducing the size of the region

corresponding to a multiplier larger than one), but does not affect the intensive margin (the value of the

multiplier within each regime).
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4 Balance sheet normalisation and the multiplier at the ZLB

In the previous section, we studied the government expenditure multiplier when QE immediately returns

to its pre-crisis level once the shock to the natural interest rate subsides, as specified in (9). We now turn to

the case where the central bank unwinds QE gradually after the natural interest rate returns to its positive

long-run equilibrium, a scenario motivated by the tendency of central banks to maintain QE beyond the

restoration of output and price stability. For example, the Fed ended the three rounds of asset purchases

known as QE1, QE2, and QE3 by late 2014, and began gradually shrinking its balance sheet as assets

matured starting in October 2017 (see Kuttner, 2018). Similar gradual normalisation programmes are

pursued by most central banks of advanced economies (see Bhattarai and Neely, 2022).

To analyse the impact on the multiplier of the gradual unwinding of QE we assume that, once the economy

enters the ZLB, the central bank makes a credible promise that it will maintain a nonzero level of QE for

some time after the natural rate of interest returns to its long-run value. The duration of this extended

phase of QE is treated as a random variable: once rnt = rn > 0 there is a probability µτ ∈ (0, 1) that

Q̂Et = υQEL, υ > 0, while QE might return to zero, QEt = 0, with probability 1− µτ . The parameter υ

measures QE in the transition path after the natural rate returns to its long-run level: the central bank can

either increase QE, υ > 1, extend it, υ = 1, or gradually unwind it, υ ∈ (0, 1).16

The model equilibrium now comprises three Markov states: the crisis state (when the natural rate is

negative), followed by a transition state, of expected duration 1/ (1− µτ ), during which QE is still positive

but the economy’s natural rate is positive and the conventional Taylor rule is active. This is followed

by the end of the QE programme, when the economy rests in the perfect foresight long-run equilibrium.

To determine the new equilibrium, let the triplet
(
Y τ , πτ , iτ

)
denote the output gap, inflation rate and

nominal rate of interest during the transitional state. The equilibrium is solved backward in two steps.17

In the first step, output and inflation during the transition state are determined. Since there is no fiscal

stimulus and the Taylor rule is active, the only state variable in the transition state is QE. Therefore,

16This strategy to study balance sheet normalisation echoes the analysis in Werning (2011), who studies announcements
about the path of interest rates under commitment (forward guidance), also distinguishing across three phases, the liquidity trap
phase, a second phase immediately out of the liquidity trap and, finally, the long-run equilibrium.

17See Appendix D for more details on this solution.
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inflation and output are given by πτ = τπQEτ and Y τ = τyQEτ , respectively, where τπ ≡ κτy−ς
1−βµτ and

τy ≡ ξ(1−µτ )(1−βµτ )+ϕ(φπ−µτ )ς
(1−βµτ )(1−µτ+ψτ ) > 0, with ψτ ≡ ϕ

[
φy + κ(φπ−µτ )

(1−βµτ )

]
> 0. The coefficient τy is positive

because φπ − µτ > 0, whilst τπ > 0, as long as µτ < 1 − ξφy/η. Thus, a gradual unwinding of QE

increases output and prices during the transition state.

Output expands during the transition phase, τy > 0, because QE stimulates borrowers’ consumption,

raising aggregate demand, as captured by the term ξ(1−µτ )(1−βµτ ) in the numerator of τy. Conventional

monetary policy offsets this by raising the nominal interest rate, as captured by the term ψτ , but less

aggressively than usual, since the negative wealth effect of QE on savers dampens the inflationary pressures

by expanding their labour supply, as captured by ϕ (φπ − µτ ) ς . Prices rise during the transition, τπ > 0,

if the inflationary impact of stronger demand outweighs the deflationary wealth effects of QE, a condition

that depends on the expected duration of the transition phase.

Given the solution for the transition state, the equilibrium values of inflation and output in the crisis state

are determined as

πL =
κ

1− βµ
(
Y L − ΓGL

)
− ςA

1− βµ
QEL, (22)

Y L − ΓGL = κgGL + κA
qeQEL + κrrL, (23)

where ςA ≡ ς − (1− µ)µτβυτπ and κA
qe ≡ κqe + (1− µ)µτκrυ

[
τy
ϕ

+ τπ
(1−βµ) −

ξ
ϕ

]
. The solutions for

inflation and output, in turn, equations (22) and (23), mirror those under immediate QE unwinding given

by equations (10) and (13), with ςA and κA
qe replacing ς and κqe. The difference is that gradual QE

unwinding amplifies inflation and output dynamics in the crisis state. Inflation rises during the transition,

meaning τπ > 0, generating expectations of higher future inflation, which offsets QE’s deflationary wealth

effect and raises crisis-state inflation, with ςA < ς . The elasticity of output gap to QE, κA
qe , is shaped

by two channels: anticipated future expansion stimulates demand, as captured by the term τy
ϕ

+ τπ
(1−βµ) ,

while expected conventional monetary policy tightening partially offsets it, through ξ
ϕ

. The net effect is

positive if τy > τ y > 0 (see Appendix D). Consequently, κA
qe > κqe. The amplification of demand is

stronger when: (i) the natural rate shock is less persistent (corresponding to a lower µ); or when (ii) the

QE unwinding is slower (corresponding to a higher µτ ); or, finally, (iii) if the QE during the transition
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period is larger (meaning a higher υ).

The equilibrium solutions for inflation and the output gap in equations (22) and (23) imply that gradual

QE unwinding once the natural rate of interest becomes positive does not alter the impact of a fiscal

stimulus on output during the crisis state. The government expenditure multiplier can take two possible

values: either ΓZLB benchmark > 1, as in equation (17) if QE and the fiscal stimulus are small enough to

leave the economy at the ZLB, or ΓZLB exit < 1, as in equation (18), if QE and the fiscal stimulus are large

enough so that the economy exists the ZLB. However, the circumstances under which the multiplier may

or may not exceed unity are distinct. From the solutions in equations (22) and (23), and using the same

reasoning as above, it follows that the government expenditure multiplier in the crisis state is always

less than unity, irrespective of the size of the fiscal stimulus, if the QE injection at the ZLB exceeds the

threshold

QE
TH,A

= − 1

χAqe

[(
φy +

φπκ

1− βµ

)
κrrL + rn

]
> 0, (24)

where χAqe ≡
[(

φπκ
1−βµ + φy

)
κA
qe −

φπςA

(1−βµ)

]
> χqe. The QE threshold in (24) is analogous to that derived in

equation (20). The magnitude of χAqe relative to χqe is determined on the basis that κA
qe > κqe and ςA < ς .

Crucially, this implies that QETH,A
< QE

TH, meaning that commitment to gradually unwind QE once the

natural rate of interest turns positive reinforces QE’s impact at the extensive margin. Thus, the multiplier

retains the state-dependent structure of equation (21), but with a larger region corresponding to the regime

where the multiplier is less than one. This result highlights how the conventional view can further overstate

the fiscal stimulus required to exit the ZLB by overlooking the expectation channels associated with

gradual QE unwinding. As previously highlighted in relation to the threshold in equation (21), the region

corresponding to the multiplier being less than one increases with the size of the central bank’s steady state

balance sheet, which amplifies the effectiveness of the exogenous QE injection in moving the economy

out of the ZLB.
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5 Multiplier under an instrument rule for QE

Next, we examine the analytics of the government expenditure multiplier at the ZLB when the central

bank conducts QE using a simple, implementable rule.18 The rule exploits the substitutability between QE

and conventional monetary policy by setting asset purchases as a function of the monetary policy shortfall

at the ZLB, as follows

QEL ≡ −ϑ (isL − iL) ,

= −ϑmin {0, isL} ,
(25)

where isL is the shadow rate defined in equation (14) and the parameter ϑ > 0 governs how aggressive the

QE rule is. The conventional monetary policy shortfall at the ZLB is given by the difference between the

shadow and the actual nominal interest rate. By linking asset purchases to the shortfall in conventional

monetary policy, equation (25) ensures that QE is undertaken only when the ZLB becomes a binding

constraint. When isL − iL < 0, the ZLB constraint is binding and there is a conventional monetary policy

shortfall. If instead isL − iL = 0, the interest rate prescribed by the Taylor rule is positive and, thus, the

ZLB constraint is not binding.

Naturally, the instrument rule (25) alters the dynamics of inflation and the output gap at the ZLB, and a

unique bounded solution at the ZLB exists if and only if the parameters satisfy

R+Rκqeϑφy + ξλη (1− µ)ϑφπ > 0, (26)

where ϑφπ > 0 and ϑφy > 0 measure QE’s response to, in turn, inflation and the output gap. Like

condition (8), the parameter restrictions in (26) can also be interpreted as placing an upper limit on how

long the private sector expects the ZLB to persist, this time, however, conditional on the QE rule in (25).

Provided that (8) holds, and since ϑ > 0, condition (26) is satisfied, enabling us to proceed with the

analysis of the multiplier using the same two-state Markov equilibrium framework as before.

The equilibrium with a binding ZLB and the QE instrument rule (25) is illustrated in Figure 4. A large

natural rate shock, that ensures condition (15) is satisfied, causes the ZLB constraint to bind in the
18Additional details for all results in this section are in Appendix E.
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neighborhood of GL = QEL = 0. This leads to a negative shadow rate and positive QE, as required

by (25). The red line represents the QE rule. When the shadow rate is positive, QE is zero; but when the

shadow rate is negative (that is, when the ZLB binds) QE becomes positive and it increases as the shadow

rate falls further. The blue line is the shadow rate. As in (16), more QE raises the output gap and inflation,

thereby increasing the shadow rate. The equilibrium is given by the intersection of the two curves.

The upshot of having an instrument rule for QE, is that the equilibrium shadow rate can be obtained as a

function of only government expenditure and the natural rate shock. To see this, consider the shadow rate

equation (14), and make use of equations (12) and (13) to substitute for, in turn, inflation and the output

gap. This yields

isL = rn + %rrL + %gGL + %qeQEL, (27)

with %r ≡
[
κφπ
1−βµ + φy

]
κr > 0, %g ≡

[
κφπ
1−βµ + φy

]
κg > 0 and %qe ≡

[
(κ−ς/κqe)φπ

1−βµ + φy

]
κqe > 0. The

equilibrium solution for the shadow rate in (27) can be replaced in (25) to determine the corresponding

equilibrium solution for QE as

QEL =

 − (1 + ϑ%qe)
−1 ϑ

(
rn + %rrL + %gGL

)
if isL ≤ 0,

0 if isL > 0.
(28)

Equation (28) shows that at the ZLB, i.e. when there is a conventional monetary policy shortfall, isL ≤ 0,

QE is entirely determined by the natural rate shock δL and government expenditure GL. According to (28),
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the equilibrium response of QE to a fiscal stimulus is dampened by the size of the central bank’s steady

state balance sheet. As captured by %qe in equation (27), the central bank balance sheet amplifies the

sensitivity of the shadow rate to QE. Thus, a larger balance sheet allows the central bank to achieve the

same macroeconomic effects on inflation and output through a smaller QE adjustment, thereby reducing

the need for a more aggressive policy response.

From equation (28) it follows that the ZLB binds if and only if government expenditure is below the

threshold

G
TH,IR

= −κr
κg
rL −

[
(1− βµ) /κg

κφπ + (1− βµ)φy

]
rn > 0, (29)

where the positive sign is established making use (15). Compared with that in equation (19) under

exogenous QE, the government expenditure threshold derived under the QE instrument rule in (25)

does not depend on QE. For the purpose of the government expenditure multiplier, this means that the

extensive margin effect of QE vanishes when the central bank determines asset purchases according to

an implementable instrument rule that conditions QE on the magnitude of the shortfall in conventional

monetary policy at the ZLB. Nevertheless, the government expenditure threshold in equation (29) still

implies that, as in the case of exogenous QE, there are two possible scenarios, illustrated in Figure 5.

When the fiscal stimulus is large, such that government expenditure is set above the threshold level,

GL ≥ G
TH,IR

, the ZLB is no longer binding and the fiscal multiplier is given by ΓZLB exit < 1, defined in

equation (18). This corresponds to the scenario illustrated graphically in panel (a) of Figure 5, with the

equilibrium obtained when the shadow rate is positive and, thus, there is zero QE.

When, instead, GL < G
TH,IR

, the fiscal stimulus is small and the economy stays at the ZLB. This is

illustrated in panel (b) of Figure 5. In this scenario, an increase in government expenditure has two

effects on the multiplier. On the one hand, as the economy remains at the ZLB following the increase in

government expenditure, the real interest rate falls resulting in a multiplier above unity, equivalent to the

benchmark multiplier at the ZLB in (17) for exogenous QE. On the other hand, through the instrument rule

in (25), QE dampens the output expansion at the ZLB caused by the increase in government expenditure,

thereby reducing the multiplier. Consequently, the government expenditure multiplier under a QE
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Figure 5: Fiscal stimulus under an instrument rule for QE at the ZLB

instrument rule, ΓQE IR, can be decomposed as

ΓQE IR = ΓZLB benchmark + κqe
dQEL

dGL

. (30)

The result in equation (30) shows that when QE is conducted according to an instrument rule as in (25),

the government expenditure multiplier while the economy remains inside the ZLB region is affected

by QE. In other words, QE influences the government expenditure multiplier through an intensive

margin channel. The strength of this intensive margin effect is measured by the product of the elasticity

of output to changes in QE, κqe > 0, and the elasticity of QE to changes in government expenditure,

dQEL
dGL

= −%g/ (1/ϑ+ %qe) < 0. From (30) it is evident that a larger size of the central bank’s steady state

balance sheet corresponds to a smaller multiplier under the instrument rule.19 This has a clear economic

interpretation: because the central bank balance sheet amplifies the impact of QE, any increase in output

and inflation induced by the fiscal stimulus is subject to a more aggressive QE tightening at the ZLB,

resulting in a lower multiplier.

Crucially, for a small fiscal stimulus that keeps the economy at the ZLB, the multiplier in (30) can be less

than unity if the instrument rule is sufficiently active, i.e. for a large value for ϑ. To see this, note first that

19The first term on the right side of (30) does not depend on b
cb, dκqe

db
cb =

κqe
b

cb > 0, and d%qe

db
cb =

[
κφπ
1−βµ + φy

]
κqe
b

cb > 0. Thus,

it must be that
d
dQEL
dGL

db
cb = −%g/ (1/ϑ+ %qe)

2 d%qe

db
cb < 0.
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the multiplier in equation (30) can be equivalently written as:

ΓQE IR =
1− µ+ ψ̂Γ

1− µ+ ψ̂
, (31)

with ψ̂ = [Rκqeϑφy + (1− µ) ξκϑφπ − κϕµ] / (1− βµ− ςϑφπ). From equation (31), it follows that

the government expenditure multiplier is less than one if and only if

ϑ > ϑ ≡ κϕµ

Rκqeφy + (1− µ) ξκφπ
> 0. (32)

Thus, equation (32) identifies when QE’s response to the conventional monetary policy shortfall is

sufficiently aggressive to ensure that the government expenditure multiplier at the ZLB is less than unity.20

The empirical evidence discussed in the Introduction, which finds multipliers below one during recent

ZLB episodes, could, therefore, suggest the implementation of a sufficiently aggressive QE rule. At the

same time, the result in (32) shed light on why medium-scale DSGE models return output responses to

government expenditure shocks at the ZLB that resemble those outside the ZLB, when using a QE rule

with direct feedback on inflation and output (Sims and Wu, 2021) .

It is natural at this stage to ask whether plausible or existing calibrations of the parameter ϑ, which captures

QE’s response to the conventional monetary policy shortfall, satisfy the condition for this response to be

sufficiently aggressive such that the government expenditure multiplier falls below unity even when the

ZLB remains binding in equation (32). We believe that the answer is likely to be affirmative. According

to the calibration described for Figure 1, the threshold value required to ensure ΓQE IR < 1 is ϑ > 1.91.

Estimates in the empirical literature typically suggest that a QE injection of $600 billion leads to a roughly

15 basis point decline in long-term yields (see, e.g., Swanson, 2021). Assuming a linear relationship and a

steady state value of Treasury securities held by the Fed of 0.795 trillions, this implies ϑ = 5.67.21 Sims

and Wu (2021) use instead ϑ = 7, for a QE rule with direct feedback on inflation and output. Both these

calibrations in our model imply a government expenditure multiplier necessarily lower than one at the

20As the rule (25) sets QE contingent on the shadow rate, this implies that for a given ϑ, the elasticity of QE to changes in
government expenditure is also higher, the larger are φπ and φy . In that sense, an aggressive conventional monetary policy rule
also causes the QE rule to be more aggressive and, thus, lowers the government expenditure multiplier.

21The steady state value is calculated, using data from FRED, as the average of Treasury securities held by the Federal
Reserve (WSHOTSL) on 18 December 2008 ($629,397 million) and 5 December 2020 ($779,715 million).
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ZLB.

As with the other multipliers derived so far, intertemporal substitution remains a key force determining

the size of the multiplier under the instrument rule (25): when the share of total consumption going to

borrowers approaches unity, z → 1, the government expenditure multiplier, ΓQE IR, goes to one, a result

that follows from the differentiation of ΓQE IR with respect to z through L’Hôpital’s rule (see Appendix E).

6 Multiplier under an optimal QE rule

We now examine the government expenditure multiplier when the central bank implements an optimal QE

policy rule, based on a quadratic approximation to the weighted sum of the savers and borrowers’ utility.22

Deriving such an approximation is not straightforward, because savers and borrowers have different

discount factors. This heterogeneity complicates the formulation of an utilitarian welfare function, (see,

e.g., Feldstein, 1964; Gollier and Zeckhauser, 2005). Specifically, if the central bank maximises the

average discounted sum of the flow utility for each group while adhering to each household’s discount

factor, this would result in a non-stationary solution where the consumption of the most impatient

individuals (borrowers) diminishes over time. To avoid this issue, we assume that the central bank cares

equally about both households and uses a common factor, β, to discount the sum of their flow utilities.

Additionally, we follow the approach in Woodford (2011) and assume that households (presumably, both

borrowers and savers, although this is inconsequential) derive utility flows directly from government

expenditure.

The central bank wishes to maximise the total expected discounted utility of the two agents, as follows

Et

∞∑
j=0

βj
[
u (Ct+j)− v (Nt+j) + u

(
Cb
t+j

)
+ G (Gt+j)

]
, (33)

where u (C), u
(
Cb
)

and v (N) represent, respectively, the per-period utility from consumption for

savers, the utility from consumption for borrowers, and the disutility from labour for the savers, as

previously described, whereas G (•) is an increasing and concave function reflecting the benefits to

22Additional details for all results in this section are in Appendix F.

32



households of public spending. We evaluate the optimal QE policy, assuming, as before, a two-state

Markov environment where the economy starts at the ZLB with the natural rate of interest rnt = rL < 0,

and returns to rnt = rn > 0, with probability 1 − µ each period. Given this equilibrium structure, a

quadratic approximation to the central bank’s loss function (33), valid for small disturbances around the

efficient (first-best) steady state, at the ZLB yields

L =
1

2

[
π2
L +

κ

ε

(
Y L − ΓGL

)2
+
κ

ε

(
ηg

1/ϕ
+ 1− Γ

)
ΓG

2

L + ςIL

]
. (34)

The first three terms in the loss function (34) are exactly the same as those obtained in the analysis of

Woodford (2011) of optimal policy with a representative agent. They capture the stabilisation motive of

the central bank, as measured by welfare losses associated with, in turn, the volatilities of inflation, the

output gap and government expenditure. The weights attached to each of these three objectives depend

on the private’s sector parameters, except for ηg = − (G ′′/G ′)Y , which depends on the concavity of the

G (•) function and, thus, the diminishing marginal utility of government expenditure. The last term IL of

the loss function (34) is, of course, different from what is obtained with the representative agent model,

and is given by

IL = −1

2

(
1− g
bcb/b

)
CLC

b

L

= −
(
Y L − ΓGL

)
QEL + (1− Γ)GLQEL + ξQE

2
L.

(35)

The first representation of IL captures a redistributive motive of the central bank, as measured by welfare

losses from consumption inequality between borrowers and savers: for a given average consumption,(
CL + C

b

L

)
/2, the product CLC

b

L is minimised the more equal are CL and C
b

L.23 The redistribution

motive emerges in two-agent New Keynesian models, as consumption inequality enters directly into the

planner’s objective (see, e.g., Bilbiie, 2024; Bonciani and Oh, 2025; Wu and Xie, 2025).

The second formulation of (35), by contrast, recasts IL as a function of QE, the output gap,
(
Y L − ΓGL

)
,

and the fiscal stimulus, GL. This formulation reveals the trade-off faced by the planner in implementing

23Because the social planner values savers and borrowers equally and discounts their utilities using the same factor β,
the first-best allocation requires equal consumption shares, implying z = 1/2. Alternatively, if the first-best steady state
is unattainable, QE would appear in the welfare function to account for the impact of stabilisation policy on consumption
dispersion. This aligns with Benigno and Woodford (2005)’s analysis of optimal monetary policy in the New Keynesian model
with a distorted steady state.
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QE at the ZLB. Since, the output gap is negative at the ZLB and we are considering a small stimulus

that leaves the economy at the ZLB, we see from (35) that IL, is increasing in the level of QE. Although

stabilisation at the ZLB calls for QE interventions, aversion to inequality limits its optimal level, as QE

amplifies the consumption gap between savers and borrowers, leading to convex welfare losses.

From equation (35) we also have that

d2IL

dQELdGL

=

(
1− dY L

dGL

)
QEL, (36)

with the upshot that, if the government spending multiplier is less than one, then an increase in government

spending raises welfare losses. The intuition is simple: with a fiscal multiplier less than one, an increase

in government spending crowds out the consumption of savers. Thus QE, by raising the consumption of

borrowers, further widens the gap with savers, resulting in greater welfare losses from inequality.

6.1 Optimal QE rule

With a small fiscal stimulus such that the economy remains at the ZLB, i.e. iL = 0, maximisation of

the loss function (34) subject to the private sector constraints given by the Phillips and IS curves in

equations (10) and (11) yields the optimal QE rule

QE
?
L = −ϑ?

[
φ?ππL + φ?y

(
Y L − ΓGL

)
− φ?I

(
Y L −GL

)]
, (37)

with ϑ? ≡ 1/ς , φ?π ≡ 2 (1− µ) (κqe − ξ) / [ϕµ (2ξ − κqe)] > 0, φ?y ≡ 2κκqe/ [ε (2ξ − κqe)] > 0 and

φ?I ≡ ς/ (2ξ − κqe) > 0. The signs of the coefficients φ?y, φ
?
π, and φ?I follow from the conditions required

to ensure that the optimal QE rule in equation (37) yields a unique bounded equilibrium at the ZLB. The

first two terms on the right side of (37) are isomorphic to the corresponding terms for inflation and output

gap in the instrument rule in equation (25). The last term, involving the deviation of private expenditure

from the steady state, Y L −GL (which is negative at the ZLB), follows from the redistribution motive

discussed above: QE reallocates resources away from savers, thereby widening the gap between their

consumption and that of borrowers.
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Two features of the optimal QE rule in equation (37) are worth observing. The first concerns the interaction

between QE and the fiscal stimulus. Upon differentiating QE
?
L with respect to GL, and making use of the

equilibrium solutions for inflation and the output at the ZLB in (12) and (13), it follows that ∂QE
?
L

∂GL
< 0.

Thus, according to the optimal rule in equation (37), QE necessarily influences the government expenditure

multiplier, reducing its size while the economy remains in the ZLB, the intensive margin channel. The

second observation concerns the impact of the size of the central bank’s steady state balance sheet. In (37),

the coefficients φ?y, φ
?
π and φ?I are independent from b

cb, whereas the coefficient ϑ? is decreasing in b
cb.

Thus, under the optimal rule, the response of QE becomes less aggressive as the size of the central bank’s

steady state balance sheet increases, through the coefficient ϑ?. This has a clear economic interpretation:

a larger balance sheet amplifies the effects of QE proportionally. As a result, the optimal QE policy scales

down with the size of the central bank’s balance sheet.

6.2 Optimal QE and the fiscal multiplier

In order to study the analytics of the government expenditure multiplier we replace the equation for QE

in (37) in the Phillips and IS equations (10) and (11), respectively. From the equilibrium solution for

output, it follows that the government expenditure multiplier at the ZLB when the central bank sets QE

according to the optimal rule in equation (37) is given by

ΓQE Opt ≡
1− µ− ψIφ

?
I + ψ?Γ

1− µ− ψIφ?I + ψ?
, (38)

where ψ? ≡ Rκqeϑ?φ?y+ξ(1−µ)κϑ?φ?π−ϕµκ
1−βµ−φ?π

and ψI ≡ Rκqeϑ?
1−βµ−φ?π

. The size of the government expenditure

multiplier ΓQE Opt in (38) depends on the magnitude of the response coefficients φ?y, φ
?
π and φ?I of the

optimal QE rule. These coefficients are themselves determined by the parameters of: the welfare loss

function, the Phillips and IS curves that constrain policy actions, and the expected duration of the ZLB.

Two results about the government expenditure multiplier ΓQE Opt in (38) are worth highlighting. First, the

multiplier ΓQE Opt is entirely independent from the size of the central bank’s steady state balance sheet,

as seen from the coefficients ψ? and ψI that do not depend on b
cb. As noted above, the effects of QE

are proportional to the size of the central bank’s steady state balance sheet, but for that same reason,
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optimal QE is inversely proportional to the central bank’s steady state balance sheet. Accordingly, the

output multiplier of government spending, driven by the QE response under the optimal rule, is likewise

unaffected by the size of central bank’s steady state balance sheet.

Second, the multiplier ΓQE Opt is less than one for any calibration of the model’s parameters that satisfy

φ?π > φπ ≡
ςϕµ

(1− µ) ξ
> 0 (39)

φ?y > φy ≡ −
(1− µ− ψIφ

?
I) (1− βµ− φ?π) + [ξ (1− µ)ϑ?φ?π − ϕµ]κ

Rκqeϑ?
. (40)

The coefficients φπ and φy, therefore, identify when the optimal QE rule is sufficiently aggressive to

ensure that the government expenditure multiplier at the ZLB is lower than unity. While the sign of φπ is

unambiguous, the sign of φy depends on model parameters. Neither φπ nor φy in (39) and (40) depends

on the size of the central bank’s steady state balance sheet.

Figure 6 illustrates our results about the optimal QE rule and the government expenditure multiplier in

this section. Panel (a) shows that, at the ZLB, the optimal QE injection is negatively related to the size of

the fiscal stimulus, meaning that QE impacts on the government expenditure multiplier while the economy

remains in the ZLB, the intensive margin channel. Panel (b) shows that the optimal QE stimulus, while

the economy is at the ZLB, decreases as the the size of the central bank’s steady state balance sheet

increases. Panel (c) shows instead that under the optimal QE rule, the government expenditure multiplier

is invariant to the size of the central bank’s steady state balance sheet. Figure 6 also shows that if the

expected duration of the ZLB is lower, corresponding to a smaller µ, then the fiscal multiplier associated

with a given increase in government spending is larger and, therefore, the optimal QE is lower.

7 Conclusion

This paper revisits the analytics of the government expenditure multiplier within a New Keynesian

framework that incorporates financial frictions and QE, aiming to reconcile theoretical predictions with

empirical findings under conditions where the ZLB on the nominal interest rate binds. The New Keynesian

literature has long emphasised two main results concerning fiscal policy at the ZLB. First, a sufficiently
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Figure 6: Response at the ZLB of: Optimal QE to a government expenditure stimulus, in % of GDP
(Panel a); Optimal QE (Panel b) and government expenditure multiplier (Panel c) to change in the size
of the central bank’s steady state balance sheet. The model consists of the Phillips curve (10); the IS
curve (11); the interest rate it = 0; and the optimal QE rule (37). Parameters are calibrated as in Figure 1,
with z = 0.5 and ε = 1.5.

aggressive temporary increase of government expenditure can help the economy exit the ZLB. Second, the

output multiplier of government expenditure is greater than one at the ZLB due to constrained monetary

policy. We show that accounting for QE challenges these results. By suitably adapting the analytically

tractable four-equation model of Sims et al. (2023), we provide closed-form insights into how QE alters

fiscal transmission and its impact on the output multiplier of government expenditure.

Our analysis yields several key results. Away from the ZLB, the presence of financial frictions attenuates

the crowding-out effects typically associated with fiscal expansions, raising the multiplier compared to

the frictionless benchmark but keeping it below unity. When the ZLB binds, QE influences the multiplier

through two distinct channels. If asset purchases by the central bank are determined irrespective of the

size of the fiscal stimulus, QE’s impacts the government expenditure multiplier through an extensive

margin effect, lowering the fiscal stimulus needed to exit the ZLB and thereby reducing the window over
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which the multiplier exceeds one. Commitment to a gradual normalisation path for QE once the economic

shocks that moved the economy into the ZLB subside further reinforces this extensive margin effect,

implying that persistent expansions of the central bank’s balance sheet are associated with government

spending multipliers below unity. In contrast, when QE follows an instrument rule or is set according to

an optimal policy derived from a micro-founded welfare loss function, it operates on the intensive margin,

directly moderating the multiplier even while the economy remains at the ZLB.

Our findings suggest that QE may effectively neutralise the expansionary effects of fiscal stimulus at

the ZLB by restoring monetary policy’s ability to tighten in response to rising demand. This calls

into question the robustness of policy prescriptions that advocate aggressive fiscal stimulus during

liquidity traps without accounting for the role of QE. More broadly, the results highlight the necessity of

incorporating unconventional monetary tools into macroeconomic analyses of fiscal policy effectiveness.
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Online Appendix

A Non-linear model and log-linearisation

This appendix has three parts. First, we present in more detail the economic environment underlying

the model of the economy from which the key equations (1) and (2) are derived. The model is based

on the New Keynesian framework of Sims et al. (2023) to which we make two modifications. First, we

render the binding leverage constraint faced by financial intermediary deterministic, thereby removing

the ”credit shocks” that affect the Phillips and IS curves in the original model. Second, we include

exogenous government purchases. These modifications allow us, as shown in the main text, to derive a

New Keynesian with QE that nests the model of Woodford (2011) as a special case. The remaining two

parts of the appendix, state the log-linear equilibrium conditions and use them to derive the Phillips and

IS equations in (1) and (2) in the main text.

Non-linear model. There are two types of households, savers and borrowers. Although there is an equal

mass of both household types (measure one), the steady-state consumption of borrowers as a share of

total consumption is z ∈ (0, 1). The final aggregate output produced in this economy is either purchased

by households or by the government. Thus the resource constraint is

Yt = Ct + Cb
t +Gt, (A.1)

where Ct denotes the consumption of savers, Cb
t is the consumption of borrowers, and Gt is government

consumption. In addition to the two household types and the government, the economy also features

financial intermediaries and a central bank. The production sector includes competitive final good

producers, monopolistic retailers who set prices subject to the Calvo (1983) friction, and wholesale

producers who hire labour services from savers. Next, we describe the problem solved by each agent

type. Savers have preferences over their individual consumption and labour supply, N , represented by the

following utility function

Et

[
∞∑
j=0

βj

(
C

1−1/σ
t+j − 1

1− 1/σ
+
N1+η
t+j

1 + η

)]
, (A.2)
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with β ∈ (0, 1), the discount factor, σ > 0, the elasticity of intertemporal substitution, and η > 0, the

inverse Frisch elasticity of labour supply. Savers earn income from employment, and their holdings of

financial assets and, thus, face the following flow budget constraint

PtCt + St = WtNt +Rs
t−1St−1 + Pt

(
Dp
t +Dfi

t + Tt −Xfi
t

)
, (A.3)

where Pt is the aggregate price level of the final good; St are one-period deposits held by savers at date t;

Wt is the wage rate; Rs
t−1 is the nominal gross return on the bonds purchased at date t − 1; Dp

t and

Dfi
t are the dividends received from the household’s ownership of, in turn, intermediate producer firms

and financial intermediaries; Tt are net transfers received by savers from the government; and Xfi
t are

exogenously determined injections of equity to the financial intermediaries. Savers choose sequences

for their consumption, employment, and savings to maximise (A.2) subject to the sequence of budget

constraints (A.3). The necessary conditions to solve this problem are

Wt

Pt
= C

1/σ
t Nη

t , (A.4)

1 = βRs
tEt

[(
Ct
Ct+1

)1/σ (
1

1 + πt+1

)]
, (A.5)

where πt+1 = (Pt+1/Pt) − 1, is the inflation rate between dates t and t + 1. Borrowers do not supply

labour, have preferences over consumption represented by the utility function

Et

[
∞∑
j=0

βjb

(
Cb
t+j

1−1/σ − 1

1− 1/σ

)]
, (A.6)

and are more impatient than savers, since βtb ∈ (0, β). The only sources of income for borrowers are

transfers received from the government and revenue raised from selling long-term bonds (of which they

are the only originators) to financial intermediaries. These long-term bonds are modeled as perpetuities

with decaying coupon payments at rate γ ∈ (0, 1). Hence, borrowers face the flow budget constraint

PtC
b
t +Bt−1 = QtNBt + PtT

b
t , (A.7)
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where T bt are the net transfers received from the government (and taken as given by the private sector),

and NBt = Bt − γBt−1 corresponds to the issuing of new long-term bonds, sold at price Qt, with Bt the

coupon liability due in t+ 1 from the outstanding long-term bonds, given by

Bt =
t∑

s=0

γsNBt−s, (A.8)

following the decaying structure of coupon payments. We assume transfers from the government to

borrowers to be given by T bt = (1 + γ) (Bt−1/Pt), which substituting in the budget constraint (A.7) yields

PtC
b
t = QtBt. (A.9)

As in Sims et al. (2023), this bail-out assumption allows the elimination of a state variable, therefore

obtaining the aggregate equations for inflation and output in the model used in the main text. However,

borrowers are not hand-to-mouth consumers, since their consumption must still obey the following Euler

equation

1 = βbEt

[(
Cb
t

Cb
t+1

)1/σ (
Rb
t+1

1 + πt+1

)]
, (A.10)

with

Rb
t+1 =

1 + γQt+1

Qt
. (A.11)

Financial intermediaries (banks) are modeled assuming that in each period there is a new competitive

stand-in bank that replaces the incumbent and receives an equity injection from savers, given by

PtX
fi
t = PtX

fi
+ γQtBfi

t−1. (A.12)

This equity injection is made out new fresh equity, PtX
fi

, and the outstanding long-term bonds held by

previous intermediaries, γQtBfi
t−1. Besides the equity injection, the stand-in bank also attracts deposits

from savers, St. Together, these internal and external funds are used to invest in two kinds of assets,

reserves held with the central bank REfit and long-term bonds Bfi
t purchased from borrowers. Thus, the
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balance sheet constraint of the financial intermediary reads as

St + PtX
fi

+ γQtBfi
t−1 = REfit +QtBfi

t . (A.13)

The financial intermediary’s profits are then distributed in the form of dividends to savers, and are given

by

PtD
fi =

(
Rb
t+1 −Rs

t

)
QtBfi

t +
(
Rre
t+1 −Rs

t

)
REfit +Rs

t

(
PtX

fi
+ γQtBfi

t−1

)
, (A.14)

where Rb
t and Rre

t are, in turn, the return on long-term bonds and the return on central bank reserves.

Financial intermediaries face a leverage constraint relative to their holdings of long-term bonds, such that

Qtbfit ≤ ΘX
fi
, (A.15)

with Θ > 0, the leverage ratio, and where bfit = Bfi
t /Pt, is the real value of long-term bond holdings by

the financial intermediary. In what follows, we assume the leverage constraint (A.15) is always binding.

Sims et al. (2023) treat the leverage ratio Θ as a stochastic parameter, which they then interpret as a

source of credit shock. This is not necessary for the purpose of our analysis, hence we treat Θ as a

constant parameter. Finally, as in Sims et al. (2023), the financial intermediary prices cash flows using the

stochastic discount factor of savers, but to do so in a myopic way, in the sense that the incumbent bank

does not price the capital that is distributed after it is replaced by a new bank. This assumption is made for

tractability, as it makes the problem of the bank static. The optimality conditions governing the behaviour

of the stand-in bank are

Ωt = βEt

[(
Ct
Ct+1

)1/σ (Rb
t+1 −Rs

t

1 + πt+1

)]
, (A.16)

0 = βEt

[(
Ct
Ct+1

)1/σ (Rre
t+1 −Rs

t

1 + πt+1

)]
, (A.17)

where Ωt > 0 stands for the Lagrange multiplier associated with the leverage constraint (A.15), being

positive because the constraint is assumed to be binding in every period t. Production is organised

across three stages: wholesale production, retail production, and final good production. The wholesale
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production is carried out by a competitive stand-in firm that produces an undifferentiated wholesale good

using the linear technology in labour at a constant marginal cost

mct = Wt/Pt, (A.18)

corresponding to the real wage. The retail producers (owned by savers) are monopolistic competitive

firms, ν ∈ [0, 1], who purchase the wholesale good to produce a differentiated intermediate good, y (ν),

and set prices subject to nominal frictions as in Calvo (1983), with θ ∈ (0, 1) the share of firms unable

to reset price each period; lastly, the representative final good producer aggregates the differentiated

intermediate goods, to produce the final good, so that

Yt =

(∫ 1

0

yt (ν)1−1/ε dν

)1/(1−1/ε)

, (A.19)

with ε > 1, the elasticity of substitution across differentiated intermediate varieties. Thus, each intermedi-

ate retail is confronted with the constant elasticity demand function

yt (ν) =

[
pt (ν)

Pt

]−ε
Yt, (A.20)

with, in turn, pt (ν), the price set by retailer ν ∈ [0, 1], and Pt =
(∫ 1

0
pt (ν)1−ε dν

)1/(1−ε)
, the aggregate

price index. Given the demand from the final output producers, the optimal reset price chosen by the retail

firms allowed to change their price, P ?
t , satisfies the condition

0 = Et

[
∞∑
s=0

(θβ)s
(

Ct
Ct+s

)1/σ (
P ?
t

Pt+s

)−ε
Yt+s

(
P ?
t

Pt+s
− ε

ε− 1
mct+s

)]
. (A.21)

Since the reset price is the same for each firm allowed to change price, and the probability of being

allowed to reset price is the same across all retailers, the aggregate price index evolves as follows

Pt = (1− θ)P ?
t
1−ε + θP 1−ε

t−1 . (A.22)
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Imposing market clearing conditions in both the intermediate goods and labour markets yields

Nt =

∫ 1

0

y (ν) dν = vpt Yt, (A.23)

with

vpt =

∫ 1

0

(pt (ν) /Pt)
−ε dν, (A.24)

a measure of price dispersion in the intermediate goods sector. The central bank and the government are

in charge of monetary and fiscal policy. Alongside controlling the nominal rate of interest it according to

a Taylor (1993)’s rule when the ZLB constrain is not binding, the central bank can also create reserve

deposits, which are used to purchase long-term bonds from borrowers. Thus, the central bank’s balance

sheet is simply given by

REt = QtBcb
t , (A.25)

with Bcb
t the holdings of long-term bonds by the central bank. The real value of the long-term bonds held

by the central bank corresponds to the amount of QE in the economy. Therefore we have that

Qtbcbt = QEt. (A.26)

with bcbt = Bcb
t /Pt, the real value of central bank long-term bond holdings. In equilibrium, the reserve

deposits created by the central bank must be held by the financial intermediaries, and the total outstanding

long-term bonds issued by borrowers must be held by the financial intermediaries and the central bank, so

that, in turn

REt = REfit ,

bt = bfit + bcbt ,

(A.27)

where bt = Bt/Pt, is the real value of outstanding bonds. Any revenue the central bank earns from its

holdings of long-term debt is transferred to the government and, likewise, the central bank’s interest

payments on reserves are funded by the government. The government purchases final goods spending an

amount PtGt. As explained above, it also transfers an amount PtT bt to borrowers. Any surplus (deficit)

the government incurs is transferred to (taxed from) savers. All transfers (taxes) are lump sums. Thus, the
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government budget constraint is

Rb
tB

cb
t−1 + PtGt + PtT

b
t = PtTt +Rre

t REt. (A.28)

Log-linear equilibrium conditions. The non-linear equilibrium conditions presented above are lin-

earised around a non-stochastic steady state with zero trend inflation. A bar above a variable without

subscript denotes the non-stochastic steady state of that variable. A hat above a variable denotes percentage

deviation from steady state, e.g., Ŷt = (Yt − Y )/Y . We consider all variables in percentage deviation

from steady state, except for government expenditure that is expressed relative to steady-state output,

G̃t = (Gt −G)/Y , with g = G/Y . The resulting linear system of equilibrium conditions is as follows

Ŷt = (1− g) (1− z) Ĉt + (1− g) zĈb
t + G̃t, (A.29)

Ŵt − P̂t =
Ĉt
σ

+ ηN̂t, (A.30)

0 = Et

(
Ĉt+1 − Ĉt

)
− σ

(
R̂s
t − Etπt+1

)
, (A.31)

0 = Et

(
Ĉb
t+1 − Ĉb

t

)
− σ

(
EtR̂

b
t+1 − Etπt+1

)
, (A.32)

R̂b
t = γβbQ̂t − Q̂t−1, (A.33)

σΩ̂t = σ(R
b
/Ω)EtR̂

b
t+1 − σ(R

s
/Ω)R̂s

t − Et
(
Ĉt+1 − Ĉt

)
− σEtπt+1, (A.34)

R̂s
t = R̂re

t = it − rn, (A.35)

Ŷt = N̂t, (A.36)

v̂pt = 0, (A.37)

m̂ct = Ŵt − P̂t, (A.38)

P̂ ?
t − P̂t−1 = (1− θβ) m̂ct+s + θβEt

(
P̂ ?
t+1 − P̂t

)
+ πt, (A.39)

πt = (1− θ)
(
P̂ ?
t − P̂t−1

)
, (A.40)

Ĉb
t = Q̂t + b̂t, (A.41)

b̂t =

(
1− b

cb

b

)
b̂ fi
t +

(
b

cb

b

)
b̂ cb
t , (A.42)
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Q̂t + b̂ cb
t = Q̂Et, (A.43)

Q̂t + b̂ fi
t = 0. (A.44)

Equations (A.29) to (A.44) form a system of sixteen linear equilibrium conditions, which determines the

endogenous variables: Ŷt, Ĉt, Ĉb
t , N̂t,

(
Ŵt − P̂t

)
,
(
P̂ ?
t − P̂t−1

)
, πt, vp, m̂ct, Q̂t, Ω̂, R̂s

t ,R̂
b
t , b̂t, b̂

fi
t , b̂cbt .

Aggregate inflation and output. Combining equations (A.39), (A.40), yields

πt = λm̂ct + βEtπt+1, (A.45)

with λ = (1− θ) (1− θβ) /θ. In turn, combining (A.30), (A.36), and (A.38) gives

m̂ct = ηŶt +
Ĉt
σ
. (A.46)

Making use of equation (A.29) to substitute in (A.46) we obtain

m̂ct =

(
1

ϕ
+ η

)
Ŷt −

[
1

σ

z

(1− z)

]
Ĉb
t −

G̃t

ϕ
, (A.47)

with ϕ = (1− g) (1− z)σ > 0. Next, combining (A.41), (A.42), (A.43) and (A.44), yields

Ĉb
t =

(
b

cb

b

)
Q̂Et. (A.48)

Using (A.48) to substitute in (A.47), we obtain

m̂ct =

(
1

ϕ
+ η

)
Ŷt −

[
1

σ

z

(1− z)

(
b

cb

b

)]
Q̂Et −

G̃t

ϕ
. (A.49)

We define the natural level of output as the output obtained when m̂ct = 0 and Q̂Et = 0, so that, from

equation (A.49), we obtain

Ŷ n
t = ΓG̃t, with Γ =

1/ϕ

1/ϕ+ η
. (A.50)
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Combining (A.49) and (A.50), it is possible to represent the aggregate marginal cost in terms of the

welfare-relevant output gap, corresponding to
(
Ŷt − Ŷ n

t

)
=
(
Ŷt − ΓG̃t

)
, as follows

m̂ct =

(
1

ϕ
+ η

)(
Ŷt − ΓG̃t

)
−

[
1

σ

z

(1− z)

(
b

cb

b

)]
Q̂Et. (A.51)

Making use of (A.51) to substitute for the marginal cost in (A.45) yields the Phillips curve equation (1) in

the main text. Finally, to obtain the IS curve corresponding to equation (2) in the main text, combine (A.29),

(A.31), (A.35) and (A.48).

B Multipliers with flexible and sticky prices

Flexible prices. With flexible prices, there is no price dispersion across retail producers and, therefore,

we have that

vpt =

(∫ 1

0

pt (ν)

Pt
dν

)−ε
= 1,

and, consequently, Yt = Nt, from equation (A.23). Furthermore, with flexible prices, we have that

Wt

Pt
= mct =

(
ε− 1

ε

)
. (B.1)

Combining (A.4) and (B.1) yields

C
−1/σ
t =

(
ε

ε− 1

)
Nη
t , (B.2)

Finally, making use of equation (A.1) and the aggregate production function to substitute for, in turn, Ct

and Nt, yields (
Yt − Cb

t −Gt

)−1/σ
=

(
ε

ε− 1

)
Y η
t . (B.3)
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Implicit differentiation of (B.3), in the neighborhood of the steady state, yields

dY

dG
=

(1/σ)
(
Y − Cb −G

)−1/σ−1
(1/σ)

(
Y − Cb −G

)−1/σ−1
+ η (ε/ (ε− 1))Y

η−1

=
1/σ

1/σ + η (1− g) (1− z)
=

1/ϕ

1/ϕ+ η
=
dŶ

dG̃
≡ Γ ∈ (0, 1) ,

(B.4)

corresponding to the multiplier with flexible prices in equation (3).

Sticky prices. When prices are staggered à la Calvo (1983), the ZLB does not bind, monetary policy

follows a Taylor (1993)’s type rule and there is absence of QE, the model of the economy includes

equations (1) and (2), with the restriction that Q̂Et = 0 for all t ≥ 0, and equation (4). Making use of the

conjectured solution for output, inflation and government expenditure reported in the main text, yields

γπG̃t = κ (γy − Γ) G̃t + ρβγπG̃t, (B.5)

(γy − 1) G̃t = ρ (γy − 1) G̃t − ϕ
(
it − γπρG̃t − r?

)
, (B.6)

it = rn + φπγπG̃t + φy (γy − Γ) G̃t. (B.7)

Combining (B.6) and (B.7), yields

(γy − 1) G̃t = ρ (γy − 1) G̃t − ϕφy (γy − Γ) G̃t − ϕ (φπ − ρ) γπG̃t. (B.8)

Next, from (B.5) we obtain

γπ =
κ (γy − Γ)

1− ρβ
, (B.9)

and plugging into (B.8) yields

[
1− ρ+ ϕφy +

ϕ (φπ − ρ)κ

1− ρβ

]
γy = 1− ρ+ ϕφyΓ +

ϕ (φπ − ρ) Γ

1− ρβ
. (B.10)

Rearranging terms, we obtain the multiplier ΓTaylor rule in equation (5).
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C Fiscal policy at the ZLB with exogenous QE

This appendix comprises five parts, each separately detailing how we determine the existence of the ZLB

equilibrium in (8), the signs of the coefficients in the inflation and output gap equations (12) and (13), the

required interest rate shock to trigger the ZLB in equation (15), the multiplier with a small fiscal stimulus

in equation (17), and the multiplier with a large fiscal stimulus in (18).

Existence of a unique equilibrium. As discussed in the main text, a pre-requisite for the analysis

of the government expenditure multiplier at the ZLB is that there exists a unique bounded solution

for the endogenous variables,
(
Ŷt, πt, it

)
=
(
Y L, πL, iL

)
, for all t < T . This solution exists as long

as the condition in equation (8) is met. To verify this condition, consider the parameters κr, κg and

κqe of the equilibrium solution for inflation and output gap in equations (12) and (13). We see that if

(1− µ) (1− βµ) = ϕµκ, the parameters κr, κg, and κqe become infinitely large, and no equilibrium

exists.24 Instead, if (1− µ) (1− βµ) < ϕµκ, then κr < 0, and with r̄L < 0, GL ' 0 and QEL ' 0, we

obtain from the IS equation (13) that Y L > 0 and from the Phillips curve in equation (12) that πL > 0.

But then, from equation (7), we have iL > 0, which violates the conjectured solution, iL = 0. Thus, for

an equilibrium solution to exist, where the ZLB condition is binding, the restriction (8) must be satisfied.

Coefficients of equilibrium inflation and output. As described in the main text, the signs of the

parameters κr, κg and κqe in the equilibrium solutions for inflation and output gap in equations (12)

and (13) follow from the restriction (8) and that Γ < 1 from (3). In particular, the numerator of κqe is

positive because when condition (8) holds, then (1− βµ) (1− µ) > µκϕ. Because κ = λ
(

1
ϕ

+ η
)

, it

follows that µϕκ > λµ.

Enter the ZLB. To determine the size of the shock to the natural interest rate required to reach the

ZLB, we replace the solutions for inflation and output gap in equations (12) and (13) into the shadow rate

equation in (14), and then solve for isL = 0 , to obtain:

rn +

(
φπκ

1− βµ
+ φy

)(
κgGL + κrrL

)
+

[(
φπκ

1− βµ
+ φy

)
κqeQEL −

φπς

1− βµ

]
QEL < 0.

24Eggertsson (2011) calls this configuration the deflationary black hole.
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In the absence of fiscal and QE stimulus, i.e when stimulus GL = QEL = 0, this reduces to:

rn +

(
φπκ

1− βµ
+ φy

)
κrrL < 0.

Using the definition of rL = rn − δL, yields condition (15).

Multiplier small fiscal stimulus. The multiplier with a small fiscal and QE stimulus in equation (17)

follows immediately by differentiating the equilibrium solution for output in equation (13) with respect to

GL and then combining terms using the definition of κg.

Multiplier with large fiscal stimulus. With a large fiscal stimulus that makes the ZLB no longer

binding even though the real rate is still negative, the equilibrium is fully caractherised by the triplet of

constant values (πL, Y L, iL) that solves the Phillips and the IS curves in (10) and (11), with iL = isL as in

equation (14). The multiplier is now derived as follows. First replace the interest rate in equation (14) on

the right side of the IS curve in (11) to derive output as

Y L =
ϕ (µ− φπ)

1− µ+ ϕφy
πL +

1− µ+ ϕφyΓ

1− µ+ ϕφy
GL −

ϕ

1− µ+ ϕφy
δL +

(1− µ) ξ

1− µ+ ϕφy
QEL.

Then replace in the above πL from equation (10) to obtain the equilibrium solution for output:

Y L =
(1− µ+ ϕφyΓ) (1− βµ)− ϕ (µ− φπ)κΓ

(1− µ+ ϕφy) (1− βµ)− ϕ (µ− φπ)κ
GL

− (1− βµ)ϕ

(1− µ+ ϕφy) (1− βµ)− ϕ (µ− φπ)κ
δL −

[(1− µ) (1− βµ)− (µ− φπ)λ]ϕξ

(1− µ+ ϕφy) (1− βµ)− ϕ (µ− φπ)κϕ
QEL.

Differentiating the above with respect to GL yields:

dY L/dGL =
(1− µ+ ϕφyΓ) (1− βµ)− ϕ (µ− φπ)κΓ

(1− µ+ ϕφy) (1− βµ)− ϕ (µ− φπ)κ
=

1− µ+ ϕφyΓ− ϕ(µ−φπ)κ
(1−βµ) Γ

1− µ+ ϕφy − ϕ(µ−φπ)
(1−βµ) κ

,

which corresponds to the multiplier ΓZLB exit obtained in (18).

54



D Normalisation and the multiplier at the ZLB

Transitional state. As explained in the main text, the model of the economy now needs to be solved

backward in two steps. In the first, given the equilibrium allocation for the perfect foresight state, the

solution for output, inflation, and the nominal rate of interest is determined from the system

πτ = κY τ + βµτπτ − ςQEτ

Y τ − ξQEτ = µτ
(
Y τ − ξQEτ

)
− ϕ (iτ − µτπτ − rn)

iτ = rn + φππτ + φyY τ .

After solving for the inflation rate in the Phillips curve and replacing the Taylor rule in the IS equation,

the system reduces to

πτ =
κ

1− βµτ
Y τ −

ς

1− βµτ
QEτ ,

Y τ − ξQEτ = µτ
(
Y τ − ξQEτ

)
− ϕ

(
φππτ + φyY τ − µτπτ

)
.

If we replace the inflation rate from the Phillips curve into the IS equation, the equilibrium level of output

is given by

[
1− µτ + ϕφy − ϕ (µτ − φπ)

κ

1− βµτ

]
Y τ =

[
ξ (1− µτ )−

ϕ (µτ − φπ) ς

1− βµτ

]
QEτ ,

which gives the solution Y τ = τyQEτ reported in the main text. Replacing this solution into the Phillips

curve yields the inflation rate during the transitional state πτ = τπQEτ , also reported in the main text.

The response coefficient of inflation to QE during the transitional state is positive as long as κτy − ς > 0.

After replacing the definition of τy and multiplying through, this becomes

κξ (1− µτ ) (1− βµτ ) + κϕ (φπ − µτ ) ς − ς (1− βµτ ) (1− µτ + ψτ )

(1− βµτ ) (1− µτ + ψτ )
> 0,
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which is positive as long as the numerator is positive. This can be written as

(κξ − ς) (1− µτ ) (1− βµτ ) + κϕ (φπ − µτ ) ς − ς (1− βµτ )ψτ > 0.

Using the definition of ψτ , cancelling terms and simplifying gives (κξ − ς) (1− µτ )− ςϕφy > 0. Using

the definitions of κ and ς , then gives as µτ < 1− ξφy/η, as reported in the main text.

The crisis state. In the second stage, the equilibrium in the crisis state is determined conditional on the

transitional state solution. At the ZLB the dynamics of inflation and output are now governed by

πL = κ
(
Y L − ΓGL

)
+ βµπL + β (1− µ)µτπτ − ςQEL,

Y L −GL − ξQEL = µ
(
Y L −GL − ξQEL

)
+ (1− µ)µτ

(
Y τ − ξQEτ

)
+ ϕ [µπL + (1− µ)µτπτ + rL] .

Thus inflation at the ZLB is

πL =
κ

1− βµ

(
ŶL − ΓG̃L

)
+
β (1− µ)µτ

1− βµ
πτ −

ς

1− βµ
QEL.

After replacing this in the IS equation, the equilibrium level of output is determined as

Y L − ΓGL = κrrL + κgGL + κqeQEL + µτ
(1− µ)

R
[
(1− βµ)

(
Y τ − QEτ

)
+ ϕπτ

]
.

This is then combined with the solutions for output and inflation during the transitional state, Ŷτ and πτ ,

to be rewritten in the more compact form as in equation (23) in the main text.

We need to evaluate when the coefficient κA
qe in equation (23) is positive. This is true as long as

τy
ϕ

+
τπ

(1− βµ)
− ξ

ϕ
> 0.

After replacing the definition of τπ and multiplying through this inequality becomes

(1− βµ) (1− βµτ ) τy + ϕκτy − ϕς − (1− βµ) (1− βµτ ) ξ
ϕ (1− βµ) (1− βµτ )

> 0,
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which holds as long as the numerator is positive or, equivalently

τy > τY ≡
ϕς + ξ (1− βµ) (1− βµτ )
(1− βµ) (1− βµτ ) + ϕκ

.

E Multiplier under an instrument rule for QE

Existence of the unique equilibrium. First we need to determine a condition for the existence of a

unique bounded solution when QE is set according to the instrument rule (25). Upon replacing the shadow

rate in equation (14) into the instrument rule (25), and then substituting this on the right sides of the

Phillips and IS curves in equations (10) and (11), respectively, the dynamics of inflation and the output

gap at the ZLB are determined by the system

 Etπt+1

EtŶt+1

 = D

 πt

Ŷt

 ,
where

D =

 1
βµ
− ς

βµ
ϑφπ −

(
κ
βµ

+ ς
βµ
ϑφy

)
− ϕ
µβ

+ [β(1−µ)ξ+ςϕ]
µβ

ϑφπ

(
1
µ

+ κϕ
µβ

+ [β(1−µ)ξ+ςϕ]
µβ

ϑφy

)
 .

The existence of a unique bounded solution at the ZLB requires the two eigenvalues of the matrix D, e1

and e2, to be both greater than one. Making use of the result for 2× 2 matrices that the product of the

eigenvalues is equal to the determinant of the matrix and the sum of the eigenvalues is equal to the trace

of the matrix, it follows that

e1e2 = det (D) =
(1− µ) ξ

βµ2
ϑφy +

κ (1− µ) ξ

βµ2
ϑφπ +

1

βµ2
− ς

βµ2
ϑφπ,

e1 + e2 = tr (D) =
1

βµ
− ς

βµ
ϑφπ +

1

µ
+
κϕ

µβ
+

[β (1− µ) ξ + ςϕ]

µβ
ϑφy.

The two eigenvalues of the matrix D are both greater than one if det (D) − tr (D) > −1. After

incorporating the above solutions and simplifying, it can be shown that when the economy is at the ZLB
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and QE follows the instrument rule in equation (25) a unique bounded solution exists if and only if

(1− βµ) (1− µ)− µϕκ+ [ξ (1− µβ) (1− µ)− µςϕ]ϑφy + (κξ − ς) (1− µ)ϑφπ > 0,

which can be equivalently expressed in the more compact form given by equation (26) using κξ− ς = ληξ,

condition (8), and the definition of κqe. It is straightforward to verify that the inequality in equation (26)

holds as long as the model parameters meet the condition in equation (8) and ϑ > 0. Note also that when

ϑ = 0, which occurs if the central bank does not implement any QE at the ZLB or, equivalently, QE is

exogenous, the requirement for the existence of a unique bounded solution in equation (26) reduces to

(1− βµ) (1− µ)− µϕκ > 0, which is condition (8).

Decomposition multiplier under instrument rule. The decomposition of the multiplier in equa-

tion (30) is determined as follows. Starting from the equilibrium solution for output in equation (13), we

know that
∂Y L

∂GL

= Γ + κg + κqe
∂QEL

∂GL

,

where κg + Γ = ΓZLB benchmark according to (17). To determine ∂QEL
∂GL

, we differentiate the equilibrium

solution for QE in equation (28) with respect to government expenditure to obtain at the ZLB

∂QEL

∂GL

= − ϑ%g
(1 + %qeϑ)

,

which then gives (30).

Derivation multiplier under instrument rule. To determine the multiplier in (31), we replace the

ZLB branch of the QE rule in equation (25) on the right side of the Phillips and IS curves in equations (10)

and (11), respectively to obtain:

πL =
(κ+ ςϑφy)

(1− βµ− ςϑφπ)

(
Y L − ΓGL

)
+

ςϑ

[(1− βµ)− ςϑφπ]
rn

Y L = GL − ξϑφy
(
Y L − ΓGL

)
+

[ϕµ− (1− µ) ξϑφπ]

(1− µ)
πL +

ϕ

(1− µ)
rL − ξϑrn.
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Combining, the equilibrium solution for output is found to be:

(
1− µ+ ψ̂

)
Y L =

(
1− µ+ ψ̂Γ

)
GL +

ςϑ [ϕµ− (1− µ) ξϑφπ]

1− βµ− ςϑφπ
rn − (1− µ) ξϑrn + ϕrL.

Differentiation with respect to GL immediately returns the government expenditure multiplier in equa-

tion (31).

Analytics multiplier under instrument rule. To determine when the government expenditure multi-

plier in equation (31) is less than one, we set ΓQE IR < 1 and solve through the inequality as

ψ̂ (Γ− 1)

1− µ+ ψ̂
< 0.

Using the definition of ψ̂ and solving through, the above becomes

{ξ (R+ ϕη)ϑφy + (1− µ) ξκϑφπ − κϕµ} (Γ− 1)

R+ ξ (R+ ϕη)ϑφy + ξλη (1− µ)ϑφπ
< 0.

The denominator is positive given condition (26). Consequently, since Γ− 1 < 0, the multiplier ΓQE IR is

less than one if the expression in the curly bracket is positive, which is condition (32) in the main text.

Multiplier under instrument rule when z → 1. Determining the value of the multiplier ΓZLB IR as the

share of borrowers in the economy tends one, i.e as z → 1, it is not straightforward. Although we have

previously shown that lim
z→1

Γ = 1, the coefficient ψ̂ in equation (31) also depends on z and lim
z→1

ψ̂ = +∞
−∞ .

We therefore apply L’Hôpital’s rule and find that

lim
z→1

ψ̂ = lim−
z→1

K1 + (1− µ)
[
K2

(1−z)2

]
[
K2

(1−z)2

]
withK1 = (1−g) b

cb

b

{
(Rκqe/ξ) υφy + λη

[
(1− µ) υφπ + σµ b

bcb

]}
andK2 = λυφπb

cb/ (σb), coefficients

comprising of model parameters independent from z. From the above, it follows that

lim
z→1

ψ̂ = − (1− µ) ,
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which is an asymptote for the multiplier ΓZLB IR. It is however easy to verify that as z grows to one ψ̂

tends to − (1− µ) from below, i.e. lim
z→1−

ψ̂ = [− (1− µ)]−, which ensures that the denominator of ΓZLB IR

in equation (31) is positive in the neighbourhood of one. This implies that lim
z→1−

ΓZLB IR = 1.

F Multiplier under an optimal QE rule

Welfare criterion function. As explained in the main text, our starting point is that the central bank

wishes to maximise the following objective function in equation (33), which can be written as:

W = Et

∞∑
j=0

βjwt+j, (F.1)

where wt = u
(
Yt − Cb

t −Gt

)
− v (Nt) + u

(
Cb
t

)
+ G (Gt). The central bank is assumed to have

enough instruments to implement an efficient (first-best optimal) steady-state equilibrium, satisfying the

following conditions: u′
(
C
)

= u′
(
C
b
)

(which implies C = C
b

and thus z = 1/2), v′
(
N
)

= u′
(
C
)
,

G ′
(
G
)

= u′
(
C
)
, and Y = N = C +C

b
+G. Considering small disturbances around the efficient steady

state, the loss function of the central bank can be expressed in consumption equivalent, as follows

L = Et

[
∞∑
j=0

βjLt+j

]
, (F.2)

with Lt = − (wt −w) /
(
u′
(
C
)
Y
)
, the flow loss function of the central bank. The second-order Taylor

expansion of wt around steady state is given by

wt −w = u′
(
Yt − Y

)
− u′

(
Gt −G

)
+
u′′

2

[(
Yt − Y

)2
+
(
Gt −G

)2
+ 2

(
Cb
t − C

b
)2]

− u′′
[(
Yt − Y

) (
Gt −G

)
+
(
Yt −Gt − Y +G

) (
Cb
t − C

b
)]

− v′
(
Nt −N

)
− v′′

2

(
Nt −N

)2
+ G ′

(
Gt −G

)
+
G ′′

2

(
Gt −G

)2
,

(F.3)

where all the derivatives are evaluated at the steady-state equilibrium, we use the fact that C = C
b
, and we

denote u′
(
C
)

= u′, u′′
(
C
)

= u′′, v′
(
N
)

= v′, v′′
(
N
)

= v′′, G ′
(
G
)

= G ′, G ′′
(
G
)

= G ′′. Making use of
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the resource constraint, Yt −Gt = Ct + Cb
t , and imposing G ′

(
G
)

= u′
(
C
)
, in the efficient steady-state,

yields

wt −w = u′
(
Yt − Y

)
+
u′′

2

[(
Yt − Y

)2
+
(
Gt −G

)2
+ 2

(
Cb
t − C

b
)2]

− u′′
[(
Yt − Y

) (
Gt −G

)
+
(
Ct + Cb

t − C − C
b
)(

Cb
t − C

b
)]

− v′
(
Nt −N

)
− v′′

2

(
Nt −N

)2
+
G ′′

2

(
Gt −G

)2
,

= u′
(
Yt − Y

)
+
u′′

2

[(
Yt − Y

)2
+
(
Gt −G

)2]
− u′′

[(
Yt − Y

) (
Gt −G

)
+
(
Ct − C

) (
Cb
t − C

b
)]

− v′
(
Nt −N

)
− v′′

2

(
Nt −N

)2
+
G ′′

2

(
Gt −G

)2
.

(F.4)

Next, applying the approximation
(
Xt−X
X

)
' X̂t +

X̂2
t

2
to each term in (F.4), yields

wt −w

u′ Y
= Ŷt +

1

2

(
Ŷ 2
t −

Ŷ 2
t + G̃2

t − 2Ŷ G̃t

ϕ
+

1− g
σ

ĈtĈ
b
t

)

− N̂t −
(1 + η) N̂2

t + ηgG̃
2
t

2
+O (3) ,

(F.5)

with O (3) collecting all the terms of third order or higher, and where we use the fact that Y =

2C
b
/ (1− g), and with 1/ϕ = − (u′′/u′)Y = 2/ (σ (1− g)) and ηg = − (G ′′/G ′)Y .

Next, consider the equilibrium condition

N̂t = v̂ pt + Ŷt, (F.6)

where, up to a second-order approximation, we have

v̂ pt = ln

∫ 1

0

(
Pt (ν)

Pt

)−ε
dν '

[
εvar (Pt (ν))

2

]
, (F.7)
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with var (•) that denotes the cross-sectional variance of prices. Substituting (F.6) and (F.7) in (F.5), yields

wt −w

u′ Y
= −1

2

(
1

ϕ
+ η

)[(
Ŷt − ΓG̃t

)2
+ (1− Γ) ΓG̃2

t

]
+

(
ξ/σ

b
cb
/b

)
ĈtĈ

b
t

− ηgG̃
2
t

2
− εvar (Pt (j))

2
+O (3) ,

(F.8)

where, recall, ξ = (1− g) z
(
b

cb
/b
)

, with z = 1/2 in the efficient steady state.

Finally, the quadratic approximation to the central bank’s welfare function is obtained by making use of

the result in Woodford (2003), that

∞∑
t=0

βtvar (Pt (j)) ' θ

(1− βθ) (1− θ)

∞∑
t=0

βtπ2
t . (F.9)

Combining (F.8) and (F.9), yields

∞∑
t=0

βtLt =
∞∑
t=0

βt

2

[
π2
t +

κ

ε

(
Ŷt − ΓG̃t

)2
+
κ

ε

(
ηg

1/ϕ
+ 1− Γ

)
ΓG̃2

t +

(
ξ/σ

b
cb
/b

)
ĈtĈ

b
t

]
, (F.10)

Finally, assuming small disturbances around the steady state and the two-state Markov equilibrium

structure described in the main text, we obtain the loss function at the ZLB in equation (34).

Derivation optimal QE rule. To derive the optimal QE policy, we make use of the economy’s resource

constraint (in log-linear form) in equations (A.29), the borrowers’ budget constraint in equation (A.48),

alongside the definitions of the parameters ϕ and ξ, to rewrite the inequality term (35) as

IL = −
(
Y L − ξQEL −GL

)
QEL. (F.11)

As a result the loss function in equation (34) can be written as

L =
1

2

[
π2
L +

κ

ε

(
Y L − ΓGL

)2
+
κ

ε

(
ηg

1/ϕ
+ 1− Γ

)
ΓG

2

L − ς
(
Y L − ξQEL −GL

)
QEL

]
(F.12)
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and the Lagrangian function of the central bank can then be formulated as

L = L + λpc
(
πL − κY L + κΓGL − βµπL + ςQEL

)
+ λis

[
Y L −GL − ξQEL −

ϕ (µπL + rL)

(1− µ)

]
.

The system of first-order conditions is

πL : πL + λpc (1− βµ)− λisϕµ

1− µ
= 0, (F.13)

Y L : ωy
(
Y L − ΓGL

)
− ς

2
QEL − λpcκ+ λis = 0, (F.14)

QEL : − ς
(
Y L −GL

)
+ 2ςξQEL + 2 (λpcς − λisξ) = 0, (F.15)

λpc : πL = κY L − κΓGL + βµπL − ςQEL, (F.16)

λis : ŶL = GL + ξQEL +
ϕµ

(1− µ)
πL +

ϕ

(1− µ)
rL. (F.17)

After combining the above first-order conditions, and using the definitions ofR and κqe, the optimal QE

rule is derived as:

QEL =
2 (1− µ) (κqe − ξ)
ςϕµ (κqe − 2ξ)

πL −
[ς − 2 (κ/ε)κqe]
ς (κqe − 2ξ)

Y L +
[ς − 2 (κ/ε)κqeΓ]

ς (κqe − 2ξ)
GL,

which is then equivalently written in the more compact form of equation (37), using the definitions of the

coefficients φ?y, φ
?
π and φ?I in the main text.

Sign of optimal QE rule coefficients. The sign of the the coefficients φ?y, φ
?
π and φ?I is determined as

follows. First note that the existence of a unique bounded solution at the ZLB under the optimal QE rule

in equation (37) requires that

R+Rκqeϑ?
(
φ?y − φ?I

)
+ ξλη (1− µ)ϑ?φ?π > 0,

which is the same stability requirement as with the instrument rule in equation (26), but ϑ?
(
φ?y − φ?I

)
and ϑ?φ?π replace ϑφπ and ϑφy, respectively. Consequently, since ϑ? > 0, sufficient conditions for the

existence of a unique equilibrium at the ZLB when the central bank follows the optimal QE rule in
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equation (37) are that φ?y > φ?I and φ?π > 0. As noted in the main text, κqe > ξ > 0. This implies that

the numerator of φ?π is positive. The numerators of both φ?y and φ?I are positive too. Thus, existence of a

unique bounded equilibrium under the optimal QE rule requires the denominators of all three coefficients

to be positive, or equivalently that

2ξ − κqe > 0. (F.18)

As a consequence it necessarily follows that φ?I > 0, which then implies that φ?y > φ?I > 0.

Response of QE to fiscal stimulus. To evaluate whether and how QE responds to a fiscal stimulus

under the optimal rule, consider differentiating the QE rule in equation (37) with respect to GL:

∂QE
?
L

∂GL

= −ϑ?φ?π
∂πL

∂GL

− ϑ?
(
φ?y − φ?I

) ∂Y L

∂GL

+ ϑ?
(
φ?yΓ− φ?I

)
. (F.19)

From the equilibrium solutions of inflation and the output at the ZLB in equations (12) and (13), we know

that:

∂πL

∂GL

=
1

1− βµ

[
κκg + (κκqe − ς)

∂QEL

∂GL

]
,

∂Y L

∂GL

− Γ = κg + κqe
∂QEL

∂GL

.

Replacing into (F.19) and rearranging yields:

∂QE
?
L

∂GL

=
−ϑ?φ?πκκg

1−βµ − ϑ
?
(
φ?y − φ?I

)
(Γ + κg) + ϑ?

(
φ?yΓ− φ?I

)[
1 + ϑ?φ?π(κκqe−ς)

1−βµ + ϑ?
(
φ?y − φ?I

)
κqe
] .

The denominator is always positive, because κκqe − ς > 0, as noted in the main text, and φ?y > φ?I, as

determined above from the sufficient conditions for the existence of a unique equilibrium at the ZLB

when the central bank follows the optimal QE rule in equation (37). Thus the derivative exists. Further,

the derivative is negative so long as the numerator is negative or:

−φ?πκκg −
(
φ?y − φ?I

)
(Γ + κg) (1− βµ) +

(
φ?yΓ− φ?I

)
(1− βµ) < 0.
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This inequality can be equivalently expressed as a boundary value on µ, that is:

µ <
1

β

[
1 +

φ?πκκg(
φ?y − φ?I

)
κg + φ?I (1− Γ)

]
.

The right side is always a number greater than one, thus the inequality holds for sure since µ < 1 by

definition. Thus, it must be that ∂QE
?
L

∂GL
< 0.

Derivation multiplier under optimal QE rule. The optimal QE rule in equation (37) can then be

replaced on the right sides the Phillips and IS curves in equations (10) and (11), respectively. From the

resulting equilibrium solution for output it follows that the government expenditure multiplier is then

given by (38), where the coefficients ψ? and ψI are defined in the main text.

Analytics of multiplier under optimal QE rule. The size of the government expenditure multiplier

ΓQE Opt in equation (38) is established as follows. As a preliminary step it is worth observing the multiplier

ΓQE Opt, like all other multipliers derived in the paper, takes the form of a ratio (A+ BΓ) / (A+ B),

with coefficients (A,B) ≶ 0 and Γ ∈ (0, 1). Such a ratio is definitely less than one in either of these

two cases: B < 0 and A + B < 0 (Case 1), or B > 0 and A + B > 0, (Case 2). 25 Bearing this

result in mind, we can verify that as long as QE is sufficiently aggressive under the optimal rule, i.e.

the coefficients of the optimal QE rule meet the restrictions φ?π > φπ and φ?y > φy, then the multiplier

ΓQE Opt in equation (38) is necessarily less than one. To see this, first note that ψ? and ψI share the same

denominator. This denominator is positive as long as φ?π < 1− βµ ≡ φπ,D. Further, even when φ?y ' 0,

the numerator of ψ? is positive as long as φ?π >
ςϕµ

(1−µ)ξ ≡ φπ,N . From (8) it follows that φπ,D > φπ,N .

Consider then two separate cases. Case 1. Suppose φ?π > φπ,D, then: 1) ψI < 0. 2) (Den ψ?) < 0,

(Num ψ?) > 0,⇒ ψ? < 0, and becomes even more negative if φ?y is large. 3) 1− µ− ψIφ
?
I > 0, because

1−µ > 0 and −ψIφ
?
I > 0. 4) (Den ΓQE Opt) = 1− µ− ψIα

?
I︸ ︷︷ ︸

>0

+ψ? is less than 0 if φ?y large. Equivalently,

1 − µ − ψIφ
?
I + ψ? < 0 if φ?y > φy, where the threshold φy is defined in equation (40) after solving

this inequality. 5) Consequently, the multiplier ΓQE Opt is necessarily less than one. Case 2. Suppose

25It is straightforward to verify that both ΓTaylor rule < 1 in equation (5) and ΓZLB exit < 1 in equation (18) meet the
requirements of Case 2. Similarly, the inequality condition in (32) ensures that the multiplier ΓQE IR < 1 in equation (31) can
only fall in either Case 1 or Case 2, depending on the magnitude of ϑ.
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φπ,N < φ?π < φπ,D, then: 1) ψI > 0. 2) (Den ψ?) > 0, (Num ψ?) > 0,⇒ ψ? > 0 and the larger is φ?y the

larger is ψ?. 3) 1 − µ − ψIφ
?
I could be either positive, in which case 1 − µ − ψIφ

?
I + ψ? > 0 and the

multiplier is less than one. 4) or 1− µ− ψIαI could be negative, however still 1− µ− ψIφ
?
I + ψ? > 0 if

φ?y is large, which again requires φ?y > φy, as defined in (40). 5) Consequently, the multiplier ΓQE Opt is

necessarily less than one. In summary, cases 1 and 2 imply that the government expenditure multiplier

ΓQE Opt in equation (38) is necessarily less than one as long as the QE is sufficiently aggressive under the

optimal policy, where sufficiently aggressive for the optimal QE rule in equation (37) requires φ?π > φπ

and φ?y > φy.
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