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Abstract

Majority voting is widely observed to produce stable policy outcomes, despite
theoretical predictions of instability in multidimensional policy spaces. The present
paper shows that stability can arise because voters have non-ordered preferences.
We model preferences as correspondences within d-dimensional policy spaces and
introduce a geometric measure of orderedness based on the angular spread α of
strictly preferred alternatives. Our main result is that majority equilibria exist provided
α < arcsin

√
(d+1)/(2d) with a dimension-free bound at α < π/4 = 45◦. We use

Euclidean preferences to show that for random samples of voters with probability one
for d tending to infinity there exist majority equilibria provided α < arccos

√
1/(m+1).

Our findings suggest that modest deviations from fully ordered preferences can ensure
stability of collective decisions under the majority rule.
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1 Introduction

Overview: From a theoretical viewpoint, it is striking that majority voting works so well
in practice, electing governments and legislatures that often deliver stable policies. Indeed,
when decisions involve many dimensions, the theoretical prediction is that majority voting
typically results in instability. To illustrate, consider m self-interested individuals voting
on how to divide a cake: no matter what division is proposed, there is always a majority
of m−1 individuals who would prefer a different one. Hence Tullock’s question (Tullock,
1981): Why so much stability?

In the present paper, we suggest that the stability of majority voting in multidimensional
settings is reinforced by individual preferences not being fully ordered, that is incomplete,
intransitive or both. We take alternatives to have d dimensions and represent an individual
preference by a correspondence assigning to each alternative a the set P(a) of strictly
preferred alternatives. The individual preference can thus be incomplete, intransitive,
subject to ambiguity or reference-point dependence, or characterized by satiation and thick
indifference sets. To quantify the degree of "orderedness," we introduce a geometric
measure: for all alternatives a, the strictly preferred set P(a) is contained within a cone
with vertex at a and angle 2α . When the angle equals π = 180◦, the preference can be
rationalized by quasi-concave utility functions; when the angle is zero, the preference can
be totally incomplete.

We define a majority equilibrium as an alternative or a status quo for which no majority
of voters strictly prefers another alternative. Our main result establishes a relationship
between the degree of orderedness and the existence of majority equilibria: if α <

arcsin
√

(d+1)/(2d) for every voter, then a majority equilibrium exists (Theorem 1). In
particular, the condition α < π/4 = 45◦ provides a dimension-free sufficient condition for
the existence of such equilibria (Corollary 1). A key insight is that the existence of majority
equilibria does not require preferences to be fully non-ordered.

In our model, all voters are assumed to cast their votes: voters who strictly prefer
an alternative to the status quo vote for it, while every other voter votes for the status
quo. We also introduce the notion of relative majority equilibrium, wherein only voters
who strictly prefer either the alternative or the status quo cast their votes. All relative
majority equilibria are by construction majority equilibria. To get the converse assertion,
we extend the description of the preference of a voter by introducing a correspondence
Q(a) assigning to each alternative a alternatives to which it is strictly preferred. Within this
extended framework, we demonstrate that every majority equilibrium is a relative majority
equilibrium (Theorem 2).

2



Next, we move on to the Euclidean model, where voters are characterized by an ideal
point, to illustrate our notion of orderedness. We show how ambiguity about alternatives or
ideal points leads to preferences not being fully ordered, and relate the amount of ambiguity
to the degree of orderedness. Ambiguity about ideal points can reflect that voters do not
know their preferences completely, and ambiguity about alternatives can reflect inattention
or that candidates are ambiguous about their platforms.

We also use the Euclidean setup to investigate random electorates, in which ideal points
are drawn uniformly on the unit sphere. We focus on two extreme cases: d → ∞ and d = 2.
For d → ∞, we show that ideal points are nearly orthogonal, which guarantees existence of
majority equilibria for almost fully ordered preferences (Theorem 3). For d = 2, we provide
estimates of the measure of orderedness ensuring existence of a majority equilibrium, and
show how fast it converges to fully-ordered preferences when the number of voters increases.

We end the paper with a connection between our main result and the mathematical
literature on centerpoints. Following the formalism of Erickson et al. (2009), we show how
our findings contribute to improving known conditions for the existence of high-depth points
(Theorem 4). This link provides a deeper geometric interpretation of majority equilibria in
the Euclidean setting.

History of the problem and related literature: Condorcet’s (1785) paradox of voting and
Arrow’s (1951) impossibility theorem have spurred extensive research on political stability
in general and on the existence of a majority equilibrium in particular. Following Plott
(1967), the literature explored conditions on individual preferences that guarantee the
existence of such an equilibrium. These conditions are highly restrictive, excluding the
vast majority of preferences.

For example, Black’s (1948) single-peakedness condition allows for 2n orderings of n
alternatives out of the n! possible orderings of n alternatives. Models in which voters have
quasi-concave and differentiable utility functions on multi-dimensional policy spaces do not
fare any better. As Kramer (1973, p. 285) puts it:

[. . . ] the various equilibrium conditions for the majority rule are incompatible
with even a very modest heterogeneity of tastes, and for most purposes are
probably not significantly less restrictive than the extreme condition of complete
unanimity of individual preferences.

One route to ensure the existence of a majority equilibrium for general individual
preferences is to strengthen the majority rule. Elaborating on the problem of dividing a cake,
Greenberg (1979) demonstrates that for general individual preferences and d-dimensional
policy spaces, a majority equilibrium exists if and only if the majority required to overturn
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the status quo exceeds d/(d+1). A limitation of the approach is that if d is large, voters
need to almost unanimously strictly prefer an alternative to the status quo to overturn it.

Another route is to impose restrictive distributional assumptions on voters’
characteristics: Grandmont (1978) introduces the notion of intermediate preferences and
demonstrates that a majority equilibrium exists for symmetric distributions of voters’
characteristics. By combining Grandmont’s and Greenberg’s approaches, Caplin & Nalebuff
(1988, 1991) establish the existence of majority equilibria with a super majority rule of
64% for intermediate preferences and a broad class of concave distributions of voters’
characteristics.

In broad terms, routes to existence of majority equilibria in a multi-dimensional setup
are requiring either quasi-unanimity of individual preferences, quasi-unanimity of the voting
rule, strong symmetry conditions, or a mixture of all three. We propose a new route to
existence of majority equilibria, namely that individuals hold non-ordered preferences. Our
route is supported, at least partially, by experiments showing that individuals have non-
ordered preferences, see e.g., Budescu & Weiss (1987), Butlera & Pogrebna (2010), Danan
& Ziegelmeyer (2006), Loomes et al. (1989, 1991), Nielsen & Rigotti (2022), Starmer
(1999), Tversky (1969), Tversky & Shafir (1992).

It has already been noted that voters’ indifference when comparing two alternatives
facilitates the aggregation of individual preferences through majority voting. For example,
if preferences are dichotomous (every voter partitions alternatives into two classes, where
the voter is indifferent between alternatives within each class), then a majority equilibrium
exists (Crès, 2001), a result similar to that of approval voting (Brams & Fishburn, 1978). An
interesting finding is that the probability of cycles decreases when voters’ preferences are
allowed to be weak (see, e.g., Fishburn & Gehrlein, 1976; Jones & al., 1995; Van Deemen,
1999; Crès, 2001; Lepelley & Martin, 2001).

Plan of the paper: Section 2 introduces the notion of orderedness and its geometric measure.
Section 3 defines the concept of majority equilibrium, presents the main existence result
(Theorem 1), and its dimension-free threshold (Corollary 1). Section 4 introduces the notion
of a relative majority equilibrium and establishes extended existence results (Theorem 2).
Section 5 illustrates our notion of orderedness in an Euclidean framework where alternatives
or preferences are ambiguous. Section 6 studies, in the Euclidean setup with random
electorates, the relationship between the dimension of the policy space and the degree of
orderedness ensuring political stability (Theorem 3). Section 7 connects our findings to
the mathematical literature on centerpoints and demonstrates how our results refine and
strengthen recent advances in that area (Theorem 4). Finally, in the appendix we present a
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result on the relationship between the dimension of the decision and the number of voters
and the degree of orderedness ensuring political stability (Theorem 5).

2 Setup

Let A ⊂Rd be a convex, compact and non-empty set of alternatives with d being the number
of policy issues. There is a finite number of voters i ∈ M = {1, . . . ,m} described by their
strict preference correspondences Pi : A → A with open graphs, {(x,y) ∈ A×A | y ∈ Pi(x)}
is open for every i ∈ M. Intuitively, y ∈ Pi(x) can be interpreted as y is strictly preferred to
x in case x is the status quo. Therefore, it is possible that y ∈ Pi(x) and x ∈ Pi(y), so voter i
could support alternative y in case x is the status quo and alternative x in case y is the status
quo.

For all p ∈Rd\{0} and α ∈ [0,π/2], or in degrees α between 0◦ and 90◦, let K(p,α)⊂
Rd be the open cone with vertex at 0 for which x ∈ K(p,α) if and only if the angle between
x and p is less than α , ∠x0p < α . Obviously, K(p,α) is the set of vectors v ∈ Rd with
v · p > 0 for α = π/2 and K(p,α) = /0 for α = 0.

Here is how we measure orderedness of preferences: we assume strictly preferred sets
are subsets of open cones. Formally, there is α ∈ [0,π/2] such that for every i and all x there
are pi ∈ Rd\{0} such that

Pi(x) ⊂ {x}+K(pi,α). (1)

The parameter α can seen as a measure of the degree of orderedness of preferences: α =

π/2 can be compatible with convex, complete and transitive preferences; and, α = 0 is
compatible with totally non-ordered preferences. Preferences can be non-ordered for many
reasons, for example because of status quo bias in which case α = π/2 corresponds to no
status quo bias and α = 0 corresponds to total status quo bias.

In Section 5 there are two illustrations based on Euclidean preferences satisfying
Property (1). The illustrations show how ambiguity about alternatives or preferences can
lead to non-ordered preferences.

3 Majority equilibrium

A majority equilibrium is an alternative for which there is no other alternative strictly
preferred by more than half of the voters.

Definition 1 A majority equilibrium is an alternative x̄ ∈ A such that for all alternatives
x ∈ A,

|{ i ∈ M | x ∈ Pi(x̄)}| ≤ 1
2

m.
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The following theorem, which relates the angles of the cones containing strictly preferred
alternatives and existence of majority equilibria, is the main result of the paper.

Theorem 1 Suppose there is α ∈ [0,π/2] such that for every i ∈ M and all x ∈ A, Pi(x) ⊂
{x}+K(pi,α) for some pi ∈ Rd\{0}. If α < arcsin

√
(d+1)/(2d), then there is a majority

equilibrium.

Proof: Let the correspondence P : A → A map alternatives to sets of alternatives preferred
by more than half of the voters

P(x) =
⋃

|C|>m
2

⋂
i∈C

Pi(x).

Then x is a majority equilibrium if and only if P(x) = /0. Moreover, the graph of P is open
because the graph of Pi is open for every i. Therefore, according to the theorem in Gale and
Mas-Colell (1975) there is an alternative x̄ such that either P(x̄) is empty or x̄ is in the convex
hull of P(x̄): i.e. either P(x̄) = /0 or x̄ ∈ coP(x̄). We show that x̄ /∈ coP(x̄), so P(x̄) = /0.

Take y, z ∈ P(x̄). There are sets of voters Cy and Cz with |Cy|, |Cz| > m/2 such that
y ∈∩i∈CyPi(x̄) and z ∈∩i∈CzPi(x̄). Since |Cy|, |Cz|> m/2, the intersection of Cy and Cz is not
empty: Cy ∩Cz ̸= /0, so there is i ∈Cy ∩Cz implying y,z ∈ Pi(x̄). There is α ∈ [0,π/2] such
that for every i, Pi(x̄) ⊂ {x̄}+K(p̄i,α) for some p̄i ∈ Rd\{0}. Hence, the angle between
y and z is less than 2α . Let ỹ and z̃ be the normalized alternatives after A is translated to
A−{x̄}, ỹ = (1/∥y−x̄∥)(y−x̄) and z̃ = (1/∥z−x̄∥)(z−x̄). Then the distance between ỹ and z̃
is less than 2sinα . Therefore, the distance between any pair of normalized points in P(x̄)
is less than 2sinα , so the distance between any pair of normalized points in the closure of
P(x̄) is less than or equal to 2sinα .

Let P̃(x̄) be the normalized alternatives in P(x̄). According to Jung’s Theorem, see Jung
(1901) and Berger (2009), there is a closed ball with radius less than or equal to

2

√
d

2(d+1)
sinα =

√
2d

d+1
sinα

such that the closure of P̃(x̄) is contained in that closed ball. The radius of the ball is less
than one, because sinα <

√
(d+1)/(2d). Hence there is q ∈ Rd \{0} such that ỹ ∈ P̃(x̄)

implies q · ỹ < 0 so y ∈ P(x̄) implies q ·y < q · x̄. Consequently, x̄ is not in the convex hull of
P(x̄), so P(x̄) is empty. 2

Remark: The assumption in Theorem 1 states that the angle between any pair of points in
Pi(x) must be less than: π = 180◦ for d = 1; 2π/3 = 120◦ for d = 2; and so on with limit
π/2 = 90◦ for d tending to infinity. Consequently, if αi < π/4 = 45◦ for every i, then there
is a majority equilibrium independently of the number of policy issues d. End of remark
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Corollary 1 Suppose there is α ≥ 0 such that for every i and all x, Pi(x) ⊂ {x}+K(pi,α)

for some pi ∈ Rd\{0}. If α < π/4, then there is a majority equilibrium.

It is remarkable that we provide a dimension-free bound, just as Caplin & Nalebuff
(1988) do.

4 Relative majority equilibrium

Some voters may be indifferent or not able to compare some pairs of alternatives x and y and,
consequently, may not participate in the vote between these two alternatives. By excluding
these individuals, we arrive at the notion of relative majority equilibrium. To define it,
we require more information about preferences than what is given by strict preference
correspondences alone. Specifically, we need correspondences mapping each alternative
to the set of alternatives to which it is strictly preferred.

Suppose voter i is described by two correspondences: the strict preference
correspondence Pi : A → A; and, the correspondence Qi : A → A mapping x to the set of
alternatives to which x is strictly preferred, where y ∈ Qi(x) means voter i strictly prefers x
to y in case x is the status quo.

Definition 2 A relative majority equilibrium is an alternative x̄ such that for all alternatives
x ∈ A,

|{ i ∈ M | x ∈ Pi(x̄)}| ≤ 1
2
|{ i ∈ M | x ∈ Pi(x̄)∪Qi(x̄)}|.

Obviously, if an alternative is a relative majority equilibrium, then it is a majority
equilibrium too. At a (relative) majority equilibrium the number voters strictly preferring an
alternative is compared to the number (of a subset) of voters.

Three assumptions ensure that majority equilibria are relative majority equilibria: x /∈
Qi(z) with x ̸= z implies (1−λ )x+λ z ∈ Pi(z) for all λ ∈ (0,1); Pi(z)∩ Qi(z) = /0; and,
Pi and Qi have open graphs. The first assumption is a convexity assumption: convex
combinations of the status quo and an alternative, which is not worse than the status quo, is
strictly preferred to the status quo. The second assumption is a consistency assumption: an
alternative cannot be both better than and worse than the status quo. The third assumption
is a technical assumption.

The three assumptions imply that majority equilibria are relative majority equilibria too.

Theorem 2 Suppose x̄ is a majority equilibrium. Then x̄ is a relative majority equilibrium.
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Proof: Since x̄ is a majority equilibrium, |{ i ∈ M | x ∈ Pi(x̄)}| ≤ m/2 for all x ∈ A. Suppose
x̄ is not a relative majority equilibrium. Then there is x ∈ A such that

|{ i ∈ M | x ∈ Pi(x̄)}| >
1
2
|{ i ∈ M | x ∈ Pi(x̄)∪Qi(x̄)}|.

Clearly, |{ i ∈ M | x ∈ Qi(x̄)}|< m/2. For all y = (1−λ )x+λ x̄ with λ ∈ (0,1),

|{ i ∈ M | y ∈ Pi(x̄)}| ≥ m−|{ i ∈ M | x ∈ Qi(x̄)}|

> m− m
2

=
m
2

contradicting that x̄ is a majority equilibrium. 2

5 Euclidean preferences

The Euclidean distance on Rd between two points x and y is ∥x−y∥=
√

∑k(xk−yk)2. Voters
have Euclidean preferences provided: every voter i has an ideal point xi ∈ A that anchors
their preferences over all alternatives; and, an alternative is strictly preferred to another
alternative provided it is closer to the ideal point than the other alternative measured by the
Euclidean distance.

Definition 3 (Euclidean preferences) For alternatives a and b voter i strictly prefers b to
a if and only if b is closer to xi than a:

b ∈ Pi(a) ⇐⇒ ∥xi−b∥ < ∥xi−a∥.

For B(x,r) being the closed ball with center x and radius r, the set of strictly preferred
alternatives to a is the interior of the ball with center at xi and radius ∥xi−a∥, Pi(a) =
intB(xi,∥a−xi∥). The natural application of Property (1) to Euclidean preferences is

Pi(a) ⊂ intB(xi,∥xi−a∥)∩ ({xi}+K(xi−a,αi)). (2)

Below we consider two takes on non-ordered Euclidean preferences. They both satisfy
Property (2) and are motivated by ambiguity.

Illustration 1: Ambiguous alternatives with Euclidean preferences

As a first take on introducing non-orderedness in the Euclidean model, we allow for sets of
alternatives instead of alternatives. This can reflect that alternatives are opaque to voters,
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perhaps because candidates are ambiguous about their platforms or voters are inattentive.
For simplicity, the ambiguity sets are closed balls centered at alternative a, and their radii
are proportional to the distances between the alternatives and ideal points, with a common
ambiguity ratio η ∈ [0,1]. For alternative a, voter i and ambiguity ratio η ∈ [0,1], let Ai(a)
be the closed ball with center at a and radius η∥xi−a∥,

Ai(a) = B(a,η∥xi−a∥).

Obviously, Ai(a) is {a} for η = 0, and Ai(a) is the closed ball with center at a and radius
∥xi−a∥ for η = 1.

Definition 4 (Ambiguous alternatives) For two alternatives a and b, voter i strictly prefers
b to a if and only if all points in Ai(b) are closer than all points in Ai(a) to the ideal point
xi:

b ∈ Pi(a) ⇐⇒ ∀a′ ∈ Ai(a), b′ ∈ Ai(b) : ∥xi −b′∥ < ∥xi −a′∥.

For η = 0 preferences are Euclidean and for η = 1 no pair of alternatives can be compared.
Figure 1 illustrates the case d = 2 with the interior of the green ball being the set of

alternatives strictly preferred to a. Alternative b is preferred to alternative a if and only if

xi a Ai(a)

Ai(b)

b
h′′

h′

Figure 1: The preferred set with ambiguous alternatives.

the distance from xi to the farthest point in Ai(b) is smaller than the distance from xi to the
closest point in Ai(a):

(1+η)∥xi−b∥< (1−η)∥xi−a∥.

Hence,

Pi(a) = intB
(

xi,
1−η

1+η
∥xi−a∥

)
.
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So Pi(a) is a subset of a cone with vertex at a containing the half-lines h′ and h′′:

Pi(a) ⊂ {a}+K
(

xi−a,arcsin
1−η

1+η

)
making the angle of the cone α = arcsin((1−η)/(1+η)), which is decreasing in η .

Remark: Another interpretation could be given to the strict preference correspondence
represented in Figure 1. For status quo a, there is a cost for every voter i in considering
an alternative b; and this cost depends linearly on ∥xi−b∥ with common ratio γ ≥ 0.

Definition 5 (Costly alternatives) For two alternatives a and b:

b ∈ Pi(a) ⇐⇒ ∥xi −b∥+ γ∥xi −b∥ < ∥xi −a∥.

For γ = 0 preferences are Euclidean and for γ =+∞ no pair of alternatives can be compared.
Obviously:

Pi(a) = intB
(

xi,
1

1+γ
∥xi−a∥

)
⊂ {a}+K

(
xi−a,arcsin

1
1+γ

)
.

End of remark

Illustration 2: Ambiguous Euclidean preferences

As a second take on introducing non-orderedness in the Euclidean model, we allow voters
to have sets of ideal points instead of unique ideal points. It is akin to a decision makers
having a set of priors instead of a single prior in models of ambiguity à la Bewley (2002). For
simplicity, the ambiguity sets are closed balls centered at xi, and their radii are proportional
to the distances between the alternatives and xi, with common ambiguity ratio δ ∈ [0,1]: For
alternative a, voter i and ambiguity ratio δ , let Bi(a) be the closed ball with center xi and
radius δ∥x−a∥,

Bi(a) = B(xi,δ∥xi −a∥).

Obviously, Bi(a) is {xi} for δ = 0, and Bi(a) is the closed ball with center at xi and radius
∥xi−a∥ for δ = 1.

Definition 6 (Ambiguous Euclidean preferences) For two alternatives a and b, voter i
strictly prefers b to a if and only if b is closer than a to all ideal points for a:

b ∈ Pi(a) ⇐⇒ ∀x ∈ Bi(a) : ∥x−b∥ < ∥x−a∥.
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axi

x′

x′′

Bi(a)

h′′

h′

Figure 2: The preferred set with ambiguous preferences.

For δ = 0 preferences are Euclidean and for δ = 1 no pair of alternatives can be compared.
Figure 2 illustrates the case with d = 2. First, the (black) cone with vertex at a and

half-lines tangent to Bi(a) (at x′ and x′′) has angle arcsinδ : it is K(xi−a,arcsinδ ). Second,
for b to be strictly preferred to a, b−a must be above the hyperplane orthogonal to 2x−a−b
for all x ∈ Bi(a):

∀x ∈ Bi(a) : (2x−a−b) · (b−a) > 0.

Hence the strictly preferred set to a, Pi(a), is the interior of the green set which is a subset
of the blue cone with vertex at a containing the half-lines h′ (orthogonal to x′−a) and h′′

(orthogonal to x′′−a):
Pi(a) ⊂ {a}+K(xi−a,arccosδ ). (3)

So the angle of the cone α = arccosδ is decreasing in δ .

Illustration of the majority equilibrium in the Euclidean model: the Fermat point

For two policy issues d = 2 and three voters m = 3, there exists a majority equilibrium for
α = π/3= 60◦, which corresponds to η =(2−

√
3)/(2+

√
3)≈ 0.0718 in case of ambiguous

alternatives and δ = 1/2 in case of ambiguous preferences.
Figure 3 illustrates the case, where voters have ideal points forming a triangle with all

angles at vertices smaller than 2π/3. The point F , where

∠x1Fx2 = ∠x1Fx3 = ∠x2Fx3 =
2π

3
,

is the unique majority equilibrium. F is the Fermat point of the triangle which minimizes
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x1

x2

x3

F

f13

f23
f12

Figure 3: The majority equilibrium with ambiguity.

the sum of the distances to the three ideal points:

F = arg min
f∈R2

∥ f−x1∥+∥ f−x2∥+∥ f−x3∥.

Let the half-line f12, respectively f13 and f23, bisect the angle ∠x1Fx2, respectively
∠x1Fx3 and ∠x2Fx3. The alternatives strictly preferred to F by x1 are a subset of the cone
{F}+K(x1−F,2π/3) (with vertex at F and delimited by f12 and f13). Any pair of the
three cones {F}+K(xi−F,2π/3), for i ∈ {1,2,3}, having empty intersection, there is no
alternative supported by a coalition of two or more voters.

Note that when the angle at a vertex is larger than 2π/3 = 120◦, then the corresponding
vertex is the Fermat point, and it is a majority equilibrium.

6 The relation between d and α for Euclidean preferences

In the present section we use Euclidean preferences and study the relationship between the
number of policy issues d and the degree of orderedness α ensuring existence of majority
equilibria in case ideal points are random. We consider two extremes: first the number
of policy issues tending to infinity; and, second the number of policy issues being fixed
and equal to two. From Theorem 1 follows that for the worst case scenario, the degree of
orderedness is decreasing in the number of policy issues and converges to π/4 = 45◦.

The angle α for d tending to infinity

The unit-sphere Sd−1 in Rd is endowed with the uniform distribution. Ideal points of voters
are assumed to be a sample of m independent and identically distributed random variables
Xd = {xd,1, . . . ,xd,m} for every d.

Lemma 1 For (Xd)d∈N with probability one,

lim
d→∞

max
i̸=k

|xd,i · xd,k| = 0.
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Proof: Follows from Theorem 6 in Cai et al. (2013). 2

The lemma implies that the angle between every pair of ideal points converges to 90◦ as d
tends to infinity.

Theorem 3 For (Xd)d∈N with probability one for d tending to infinity:

• The center of the unit-sphere 0 is a majority equilibrium provided

α < arccos

√
2

m+1
.

• The average ideal point cd = (1/m)∑i xd,i is a majority equilibrium provided

α < arccos

√
1

m+1
.

Proof: To ease notation we drop d as subscript. According to Lemma 1 limd→∞,maxi ̸= j |xi ·
x j|= 0. Consider N ⊂ M with |N|= n and i ∈ N. The alternative being supported by voters
in N is their average ideal point (1/n)∑k∈N xk for both cd or 0 being the status quo.

For the centre of the unit-sphere 0:

lim
d→∞

xi ·
1
n ∑

k∈N
xk =

1
n

with limd→∞ ∥(1/n)∑k∈N xk∥2 = 1/n. Consequently,

lim
d→∞

∠xi0
1
n ∑

k∈N
xk = arccos

1√
n
.

The result follows from setting n equal to ⌊0.5m⌋+1 and using that ⌊0.5m⌋+1 ≥ 0.5(m+1).
For the average ideal point (1/m)∑ j xj:

lim
d→∞

(
xi−

1
m ∑

j
xj

)
·

(
1
n ∑

k∈N
xk−

1
m ∑

j
xj

)
=

1
n
− 1

m

with limd→∞ ∥xi−(1/m)∑ jxj∥2 = 1−1/m and limd→∞ ∥(1/n)∑k∈N xk−(1/m)∑ jxj∥2 =

1/n−1/m. Consequently,

lim
d→∞

∠xi
1
m ∑

j
xj

1
n ∑

k∈N
xk = arccos

√
m−n

(m−1)n
.

The result follows from setting n equal to ⌊0.5m⌋+1 and using that m−⌊0.5m⌋−1 ≤
0.5(m−1) and ⌊0.5m⌋+1 ≥ 0.5(m+1). 2

Remark: Theorem 3 implies that with high probability for d large:
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• 0 is a majority equilibrium for: α < 64.76◦ for m = 10; α < 81.91◦ for m = 100; and,
α < 87.44◦ for m = 1000.

• cd is a majority equilibrium provided: α < 72.45◦ for m = 10; α < 84.29◦ for m =

100; and, α < 88.19◦ for m = 1000.

Going from α to m, cd is a majority equilibrium for α ≤ 75◦ in case m ≥ 14 and 0 is a
majority equilibrium for α < 75◦ in case m≥ 29. The calculations indicate that the deviation
from fully complete preferences ensuring political stability is modest provided the number
of policy issues is large. End of remark

One aspect of Theorem 3 is particularly remarkable. In much of the social choice
literature, high-dimensional policy spaces are viewed as an adversary of stability. For
example, Greenberg’s (1979) supermajority result becomes vacuous as d → ∞, the Caplin &
Nalebuff (1988) supermajority threshold rises with d, and, our bound in Theorem 1 falls with
dimensionality. There seems to be a ‘curse of dimensionality’ also in social choice. Theorem
3 offers an opposite view: when the policy space is high dimensional, two randomly chosen
vectors are almost surely orthogonal, and this geometric property can foster stability; indeed
majority equilibria emerge with only a modest degree of non-orderedness.

Another notable feature of Theorem 3 is that it does not rely on symmetry of ideal
points, unlike Grandmont (1978). With probability one, the distribution of ideal points is
not symmetric about the center of the unit sphere. In fact, as d → ∞, the inner product of any
ideal point with the sum of all ideal points converges to one: limd→∞ xi ·∑kxk = 1 for every
i. Hence the set of ideal points can be separated from the origin by a hyperplane orthogonal
to that sum. Theorem 3 therefore rests on preferences being not fully ordered, rather than
on symmetry in the distribution of ideal points.

Lastly, Lemma 1 holds when both the number of policy issues d and the number
of voters m tend to infinity, provided (logm)/d goes to zero. Under these conditions,
with probability one the degree of orderedness needed to ensure existence of a majority
equilibrium converges to π/2. We expand on that in the appendix. We study sequences
of samples of random ideal points for which both d and m tend to infinity (not necessarily
with (logm)/d → 0). Moreover, majority equilibria are generalized to ρ-majority equilibria
according to which an alternative is stable provided there is no other alternative preferred by
more than ρ×100% of the voters. We show that with probability one for d and m tending
to infinity the centre of the unit-sphere is a ρ-majority equilibrium for all α < 90◦. Hence,
just a pinch of non-orderedness ensures political stability.

14



The angle α for d = 2

Consider samples of m independent and identically distributed random variables X̃ =

{x̃1, . . . , x̃m} on the unit circle S1 in R2. We define the largest distance from the center 0
to the convex hull of the ideal points of voters in C, where C is a subset of ⌊m/2⌋+1 voters:

δ̃ = max
C⊂M, |C|=⌊m/2⌋+1

min
x∈co X̃C

∥x∥ (4)

for X̃C = {x̃i, i ∈C}. Note that X̃C ⊂ {0}+K(p, α̃) for some p ∈ R2 and α̃ = arccos δ̃ .
To estimate α̃ for every m, we generate n independent realizations X̂1, . . . , X̂n of the m-

point set X̃ . For every realization k, we compute the corresponding α̂k = arccos δ̂k with δ̂k

defined according to (4). Then the estimator is:

α̂ =
1
n

n

∑
k=1

α̂k

The graphs in Figure 4 shows the values of the estimator α̂ (blue curve) and the 10%
and 90% quantiles (yellow curves) as functions of the size of the electorate m for n = 1000
realizations. The angle ensuring that the center of the distribution is a majority equilibrium

0 50 100 150 200 250 300

20

40

60

80

m

α

Figure 4: α̂ (blue curve) and the 10% and 90% quantiles (yellow curves).

converges quite fast to 90◦. For m = 50 voters, it is 67◦, with the 10% and 90% quantiles at
57◦ and 75◦ respectively; and for m = 300 voters, it is 80◦, with the 10% and 90% quantiles
at 76◦ and 84◦ respectively.

The angle ensuring that the mean point of each realization X̂ is a majority equilibrium is
a bit larger. For m = 50 voters, it is on average 72◦, instead of 67◦; and for m = 300 voters,
it is on average 82◦ instead of 80◦.
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7 Centerpoint theorems

Let us now link our framework to the literature on centerpoints, and demonstrate how
Theorem 1 strengthens recent advances in that area.

Suppose X is a set in Rd with m points. Then a point x ∈ Rd is a centerpoint of X
provided every closed half-space containing x contains at least m/(d+1) points of X . There
can be multiple centerpoints and they do not need to belong to X . The Centerpoint Theorem
states that every finite point set in Rd has a centerpoint.

The notion of centerpoints has been generalized to cones or wedges in Erickson et al.
(2009). Let K̄(p,α) denote the closure of K(p,α). First, define the α-cone depth of x ∈ Rd

with respect to X as
Dα(x,X) = min

p∈Rd
|X ∩ ({x}+K̄(p,α))|.

A centerpoint of X is a point x for which Dπ/2(x,X)≥ ⌈m/(d+1)⌉. Second, for fixed α , d
and m define the minmax depth as

µ
d
α(m) = min

X∈{N⊂Rd | |N|=m}
max
x∈Rd

Dα(x,X).

The Centerpoint Theorem states that µd
π/2(m) = ⌈m/(d+1)⌉. Erickson et al. (2009) show

that for d = 2:
µ

2
α(m) = ⌈m/2⌉ for 2π/3 ≤ α < π,

and for an arbitrary d:

µ
d
α(m) = ⌈m/2⌉ for π/2+arccos

√
1/d ≤ α < π. (5)

Theorem 1 allows us to improve Condition (5), as we get the following corollary.

Theorem 4 If α > π/2+arccos
√
(d+1)/(2d), then µd

α(m)≥ ⌈m/2⌉.

Clearly, Theorem 4 improves Condition (5), as

arccos

√
d+1
2d

< arccos

√
1
d

for d ≥ 2 with limd→∞ arccos
√

(d+1)/(2d) = π/4 and limd→∞ arccos
√

1/d = π/2.
To prove Theorem 4, we link the notion of centerpoint for wedges to the notion of

majority equilibrium in the following Euclidean setup: For every voter i with ideal point
xi ∈ Rd , the strictly preferred correspondence is defined by

Pi(a) = {a}+K(xi−a,α). (6)
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Let us first observe that xi ∈ {a}+K(p,α) if and only if a+p ∈ {a}+K(xi−a,α): voter i
strictly prefers a+p to a.

Consider a society of m voters with ideal points in X = {x1, . . . ,xm} and common
degree of orderedness α . The policy getting the most support against a is in a direction p
that maximizes |X ∩({a}+K(p,α))|, or equivalently minimizes |X ∩({a}+K̄(−p,π−α))|.
Hence the depth Dπ−α(a,X) is the minimum number of voters that does not support any
challenger against a. For a given X , the most stable incumbent is the alternative with
maximum depth. Finally, the worst m-points set is one that minimizes this maximum depth,
implying that µd

α(m) is a general threshold for existence of a political equilibrium.
We have the following lemma.

Lemma 2 If x̄ is a majority equilibrium, then Dπ−α(x̄,X)≥ m/2.

Proof: Suppose to the contrary Dπ−α(x̄,X) < m/2; then there exists p ∈ Rd such that
|X ∩ ({x̄}+K̄(p,π−α))| < m/2. Hence |X ∩ ({x̄}+K(−p,α))| > m/2. Let C ⊂ M denote
the coalition of voters with ideal points in this set. Then (x̄−p) ∈ ∩CPi(x̄), which is a
contradiction. 2

Lemma 2 implies Theorem 4.

Proof of Theorem 4: Consider an m-point set X , and interpret it as the ideal points of
an electorate preferences defined by 6, with a commmon degree of orderedness α ′ <

arcsin
√
(d +1)/2d. From Theorem 1 we know that there is a majority equilibrium x̄

in the convex hull of X . Then by Lemma 2, we get: Dπ−α ′(x̄,X) ≥ ⌈m/2⌉. Hence
maxx∈Rd Dα(x,X)≥ ⌈m/2⌉ (with α = π −α ′).

This holds for all m-point sets X . As a consequence µd
α(m) ≥ ⌈m/2⌉ when α >

π−arcsin
√

(d+1)/2d = π/2+arccos
√
(d+1)/(2d). 2

8 Final remarks

We have proposed a novel possible explanation of why majority voting works so well in
practice, namely non-orderedness of preferences. Whereas the classic literature has relied
on restrictive symmetry conditions, homogeneity of preferences, or strengthened majority
rules, we show that even modest deviations from fully ordered preferences can ensure the
existence of majority equilibria.

We model non-orderedness by requiring that, for any incumbent, the set of strictly
preferred alternatives lies within a cone of angle α < 90◦, and we establish sharp angular
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thresholds guaranteeing the existence of majority equilibria – most notably a dimension-
free bound at α < 45◦. In doing so, we provide a precise, analytically tractable framework
explaining why stability can emerge without symmetry assumptions or supermajority rules.

Our analysis leads us to conjecture that the dimension-free stability threshold of α < 45◦

established in Corollary 1 might be improved to α < 60◦ with the worst-case scenario arising
for three voters in a bidimensional Euclidean setup as illustrated in Figure 3. Moreover, the
figure suggests that, in the Euclidean framework, the Fermat point of voters’ ideal points
might be a better proxy for the point that maximizes political stability than both the mean
ideal point and the centre of the distribution of ideal points are.
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Appendix: political stability as d and m tend to infinity

The notion of majority equilibrium is generalized to ρ-majority equilibria for all ρ ∈ (0,1).
A ρ-majority equilibrium is an alternative for which there is no other alternative that is
strictly preferred by more than ρ×100% of the voters.

Definition 7 A ρ-majority equilibrium is an alternative x̄ ∈ A such that for all alternatives
x ∈ A,

|{ i ∈ M | x ∈ Pi(x̄)}| ≤ ρm.

Let Xd,m = {xd,1, . . . ,xd,m} be a sample of m independent and identically distributed random
variables in Sd−1 for every for every d and m. We consider Euclidean preferences and study
the relationship between the number of policy issues d and voters m on the one side and the
degree of orderedness ensuring existence of ρ-majority equilibria as both d and m tend to
infinity.

The average ideal point converges to the centre of the unit-sphere 0 for m tending to
infinity independently of whether d tends to infinity or not. Indeed, the expected value of
the average ideal point is zero E[(1/m)∑ j xd, j] = 0 and the variance of the average ideal
point converges to zero as V[(1/m)∑ j xd, j] = 1/m. Therefore, there is no need to separate
between the average ideal point and the centre as in Theorem 3.

Theorem 5 For all ρ and (Xm,d)m,d∈N with probability one for d and m tending to infinity
the centre of the unit-sphere 0 is a ρ-majority equilibrium provided α < 90◦.

Proof: The idea of the proof can be explained in a few steps. The first step is to find a cone
with vertex at zero and some angle such that: it contains a ρ-majority of voters; and, all
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cones with vertex at zero and smaller angles do not contain a ρ-majority of voters. However,
we use the (ρm+1)ρm/2 smallest angles instead of ρm+1 voters whose ideal points are
contained in a cone with vertex at zero and the smallest angle. These (ρm+1)ρm/2 smallest
angles need not be associated with ρm+1 voters. Ideal points associated with these angles
can be contained in a cone with vertex at zero and angle smaller than or equal to the smallest
angle needed to contain a ρ-majority. The second step is to show that the angle needed for
a cone with vertex at zero to contain ideal points associated with the (ρm+1)ρm/2 smallest
angles converges to π/2 as d and m tend to infinity.

For two points xi and x j on Sd−1 let ∠ij =∠xi0xj ∈ [0,π] be the angle between xi and xj.
Obviously, for m points, then there are m(m−1)/2 angles (∠i j)i j. According to Cai et al.
(2013) for the error function erf : [0,π] defined by

erf(∠) =
2√
π

∫ ∠

0
e−t2

dt,

the density p(∠) and the cumulative distribution P(∠) of angles are
p(∠) =

1√
2π

e−(
√

d−2(π/2−∠))2/2

P(∠) = 1− 1
2

[
1+erf

(
d−2

2

(
π

2
−∠
))]

.

Therefore, the distribution of angles ∠ has mean π/2 and variance 1/(d−2), which
converges to zero as d tends to infinity. According to Theorem 4 in Cai et al. (2013)
the distribution of the normalized angles (

√
d−2(π/2−∠ij))i< j converges weakly to the

standard normal distribution N(0,1) as d and m tend to infinity. The half normal distribution
with ∠ ∈ [0,π/2] has mean π/2+(1/(d −2))

√
π/2, which converges to π/2 as d tends to

infinity, and variance (1−2/π)/(d−2), which converges to zero as d tends to infinity.
For ρ ∈ (0,1) consider the (⌊ρm⌋+1)⌊ρm⌋/2 smallest angles. Let λ

ρ
m ∈ [0,1] be the

ratio between the number of the (⌊ρm⌋+1)⌊ρm⌋/2 smallest angles and the number of angles
m(m−1)/2,

λ
ρ
m =

(⌊ρm⌋+1)⌊ρm⌋
m(m−1)

.

Then λ
ρ
m converges to ρ2 as m tends to infinity. Let ∠ρ

d,m ∈ [0,π] be defined by P(∠ρ

d,m) =

λ
ρ
m . Clearly, ρ2 ≷ 1/2 if and only if ∠ρ

d,m ≷ π/2. Moreover, since P is continuous, if d tends
to infinity, then ∠ρ

d,m converges to π/2 for all ρ because P is independent of m.
The average angle Eρ

d,m[∠
ρ

d,m] in the set of the (⌊ρm⌋+1)⌊ρm⌋/2 smallest angles
converges to

Eρ

d,m[∠
ρ

d,m] ≈ 1
λ

ρ
m

1√
2π

∫ ∠ρ

d,m

−∞

∠e−(
√

d(π/2−∠))2/2 d∠.
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as d and m tend to infinity. Two cases are considered: λ
ρ
m ≤ 1/2 so ∠ρ

d,m ≥ π/2; and,
λ

ρ
m ≥ 1/2 so ∠ρ

d,m ≤ π/2. In the first case it is used that

1√
2π

∫
∞

−∞

∠e−(
√

d(π/2−∠))2/2 d[∠ρ

d,m,π]

=
λ

ρ
m

2
Eρ

d,m(−∞,∠ρ

d,m]+
1−λ

ρ
m

2
Eρ

d,m[∠
ρ

d,m,π/2]+
1
2
Eρ

d,m[π/2,∞)

=
π

2
.

Since Eρ

d,m(−∞,π/2] and Eρ

d,m[π/2,∞) are means for half normal distributions,

lim
d,m→∞

Eρ

d,m[π/2,∞) =
π

2

lim
d,m→∞

Eρ

d,m(−∞,∠ρ

d,m] =
π

2

lim
d,m→∞

λ
ρ
m = ρ2.

Therefore, Eρ

d,m(−∞,∠ρ

d,m] converges to π/2 as d and m tend to infinity. In the second case
it is used that

1√
2π

∫
∞

−∞

∠e−(
√

d(π/2−∠))2/2 d[∠ρ

d,m,π]

=
1
2
Eρ

d,m(−∞,π/2]+
λ

ρ
m−1/2

2
Eρ

d,m[π/2,∠ρ

d,m]+
1−λ

ρ
m

2
Eρ

d,m[∠
ρ

d,m,∞)

=
π

2
.

Since Eρ

d,m(−∞,π/2] and Eρ

d,m[π/2,∞) are means for half normal distributions,

lim
d,m→∞

Eρ

d,m(−∞,∠ρ

d,m] =
π

2

lim
d,m→∞

Eρ

d,m[π/2,(2λ
ρ
m−1)/2] =

π

2

lim
d,m→∞

λ
ρ
m = ρ2.

Therefore, Eρ

d,m(−∞,∠ρ

d,m] converges to π/2 as d and m tend to infinity.
For every n ∈ N let Aρ,n

d,m ⊂ Rd be a random sample of n(n−1)/2 angles in the set of the
smallest (⌊ρm⌋+1)⌊ρm⌋/2 angles. Then with probability one every angle in Aρ,n

d,m converges
to π/2 as d and m tend to infinity. Since it is true for every n ∈ N, it follows from the proof
of Theorem 3 that with probability one for all α < π/2 there is a ρ-majority equilibrium as
d and m tend to infinity. 2
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