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Abstract 

Many contests, such as innovation races or sport competitions, often involve reimbursement of 
expenses. This study examines optimal reimbursement schemes in two-player Tullock contests, 
analyzing six reimbursement structures: external versus internal funding source each targeting the 
contest winner, the loser, or both of them. We assess the implications on effort, winning 
probabilities, and designer payoff under three key conditions: full-reimbursement, neutrality 
(preserving initial win chances) and viability (positive efforts from players). We find that all the 
schemes can satisfy viability; and all the schemes except for external reimbursement to the winner 
can satisfy neutrality. Additionally, all the schemes except internal reimbursement to the winner, 
and internal or external reimbursement to both players can satisfy full-reimbursement. These 
findings indicate that optimal reimbursement structures and rates vary depending on the contest 
structure, and the designer’s objectives, such as maximizing effort or maximizing personal payoff.  
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1. Introduction 

Competition is the lifeblood of economic activities, business, sports, war, R&D races, and 

promotional tournaments. In these situations, participants invest costly resources to secure a prize, 

which is the essence of a ‘contest’. In many such contests, a player may be reimbursed for their 

expended resources. For instance, the Defense Advanced Research Projects Agency (DARPA) has 

employed reimbursement strategies in its Grand Challenges, such as the Self-Driving Car 

Challenge, to encourage bold technological leaps (Goodrich & Olsen, 2003). Similarly, the 

XPRIZE Foundation has utilized milestone prizes to offset development costs and catalyze 

innovation in fields like space exploration and environmental sustainability (Diamandis & Kotler, 

2012). The U.S. Department of Energy, the NASA and the European Innovation Council have all 

implemented reimbursement programs to promote innovation in energy efficiency, sustainable 

space technologies, and blockchain. Beyond R&D, reimbursement schemes are employed in 

various areas such as defense, or organizational competitions. In military history, war indemnities, 

where the defeated nation compensates the victor, have served as both a deterrent and a means of 

reparation (Ferguson, 2001). Reimbursement is often utilized in internal competitions, such as 

promotional tournaments, to incentivize employee development and enhance organizational 

performance. 

Reimbursement in contests can be made in several ways that vary in terms of the extent of 

reimbursement (full or partial), the source of reimbursement (external reimbursement by a third 

party, or internal reimbursement by one or more of the players), and the outcome-contingent target 

(the winner and\or the loser). The reimbursement scheme is usually determined by a contest 

designer who wishes to attain certain goals by affecting the players’ incentives. An innovation 

authority, for example, may select the reimbursement scheme that best promotes the viability of 

the R&D race, i.e., maximizes the likelihood of a technological breakthrough. The preferred 

scheme may also be justified by social norms or by guiding and binding principles of fair conduct. 

Although reimbursement schemes are inherently important in these contests, there is a scarcity in 

the literature to systematically analyze and compare various reimbursement schemes. In this study 

we theoretically focus on six schemes of partial or full-reimbursement. In three schemes, a third 

party (the designer) reimburses the winner, the loser, or both of them; whereas in the other three 

schemes one player reimburses the cost to the other, or both of them reimburse each other 



 

3 
 

(reciprocal reimbursement). Moreover, we consider a set of desirable properties such as full-

reimbursement, participation constraint, and neutrality (defined in Section 1.1) for each of the 

schemes and compare their performance in terms of the total effort generated (resources spent), 

and the designer’s payoff. 

Reimbursement schemes in contests have been investigated in the literature earlier, although not 

systematically. Chowdhury and Sheremeta (2011a) constructed a Tullock (1980) contest with 

effort spillovers where contingent upon winning or losing, the payoff of a player is a linear function 

of prizes, own effort, and the effort of the rival. This generic structure nests several existing 

contests in the literature and is used as a special case to analyze models of internal reimbursement. 

Similar structure of spillover and reimbursement was studied by Baye et al. (2005, 2012), in an 

all-pay auction set-up, focusing on the designer’s payoff and the players’ efforts under symmetric 

prize valuations. Xiao (2018) proved that an all-pay contest with additively separable spillovers 

has a unique Nash equilibrium. Loser reimbursing the winner has been studied in the literature 

(Baumann & Friehe, 2012; Carbonara et al., 2015; Luppi & Parisi, 2012; Matros & Armanios, 

2009; Yates, 2011) focusing on Tullock contests. Specific models of external reimbursement are 

also analyzed by Cohen and Sela (2005), Matros (2012), and Thomas and Wang (2017).1 Matros 

and Armanios (2009) generalized the external reimbursement by allowing reimbursement of the 

winner and the loser, jointly or separately, focusing on the designer’s payoff under symmetric prize 

valuations.  

1.1. Six schemes of reimbursement 

In this study, we introduce a two-player Tullock contest that incorporates the option for effort 

reimbursement in six mutually exclusive and exhaustive reimbursement schemes. These schemes 

are categorized based on the source (external or internal) and target (winner and\or loser) of the 

reimbursement. While each scheme is suitable for particular contexts, contest designers may also 

face choices between them. Thus, it becomes essential to identify which scheme best fits a given 

context and whether improvements can be made. Our key questions include which reimbursement 

scheme is the most desirable, and whether any of them meet multiple desirable criteria 

simultaneously. A central focus in contest design is determining how designers can achieve their 

 
1 Thomas and Wang (2017) studied a Tullock contest with external subsidization regardless of who wins. An important 
characteristic of this setting is the assumption that there is a limited amount of resource that can be used for subsidies.  
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objectives (e.g., designer payoff or total effort) through interventions that influence the contest. In 

this study we answer these for the first time. Table 1 summarizes the six reimbursement schemes 

for clarity. 

Table 1. Reimbursement schemes  

Schemes 
Reimbursement source 

External (from the designer) Internal (from the opponent) 

Reimbursement 
target 

Winner Scheme A Scheme B 

Loser Scheme C Scheme D 

Both 
Winner & 

Loser 
Scheme E Scheme F 

(reciprocal reimbursement) 

 

Scheme A: reimbursement of the winner’s expenses by a third party (external reimbursement). 

This reimbursement scheme is common in competitions between employees for a position or job 

or for promotion to a certain rank. The manager often wishes to motivate the participants by 

covering the winner’s expenses (Thomas & Tung, 1992). Such a reimbursement scheme is also 

common in R&D races because the contest designer wants to increase the profitability of winning. 

This scheme has also been studied in contests by Cohen and Sela (2005) and was expanded by 

Matros and Armanios (2009) and Matros (2012). 

Scheme B: reimbursement of the winner’s expenses by the loser (internal reimbursement). This 

reimbursement scheme studied by Baye et al. (2005), in a symmetric all-pay auction set-up. This 

scheme can be applied in war when victors impose war indemnities on the vanquished side to 

recoup the costs of warfare and punish the defeated population (Sullo & Wyatt, 2014). It is no 

wonder that peace treaties between warring nations often resort to legal justifications such as 

coverage of war expenses. In this scheme, the maximal reimbursement that results in the 

participation of the players cannot be 100%.2 Note that for some non-Tullock contests, full-

reimbursement induces an interior equilibrium (e.g., Plott, 1987). Moreover, for Tullock contests 

with non-linear cost functions or “impact” functions, full-reimbursement also induces an interior 

 
2 The rate of reimbursement is less than 100%; it is equal to the maximal rate that yields an interior equilibrium.  
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equilibrium for some extent of non-linearity (e.g., Carbonara et al., 2015; Farmer & Pecorino, 

1999).  

Scheme C: reimbursement of the loser’s expenses by a third party (external reimbursement). The 

most common application of this reimbursement is insurance. An insurance company reimburses 

the loser for their expenses. This reimbursement scheme is plausible in various contexts, such as 

education, where underperforming students may receive support after failing a test; intra-firm 

competitions, where designers incentivize participation by offsetting losses; and R&D races aimed 

at stimulating innovation. Minchuk and Sela (2020) studied this scheme in the context of 

insurance, where the designer can offer players an insurance option that requires them to pay a 

premium to cover potential losses. They found that this scheme may be profitable for the designer. 

This scheme of reimbursement was also studied in Matros and Armanios (2009).  

Kovenock and Lu (2020) studied score procurement auctions with all-pay quality bids, where a 

supplier’s score is the difference between their quality and price bids. They found that reimbursing 

the all-pay components of losing or all suppliers increases quality provision and suppliers’ payoffs 

but reduces total surplus and the procurer’s payoffs by lowering suppliers’ marginal provision 

costs. Since social marginal quality provision costs remain unchanged and exceed individual costs, 

the additional quality provision may be overly costly to society, making suppliers’ decisions under 

such subsidies less efficient. 

Scheme D: reimbursement of the loser’s expenses by the winner (internal reimbursement). This 

scheme of reimbursement is observed in the aftermath of war when the victor is required to 

compensate the loser after being convicted of war crimes or when there is an agreement (imposed 

by the designer or between the parties) on the importance of supporting the weak or needy. A close 

example without war crime is the Marshall Plan implemented by the USA post-World War II on 

some of the axis powers in western Europe. This scheme can incentivize weaker players to 

participate in the competition due to the anticipation that the winner will reimburse the loser for 

his expenses. 

Scheme E: reimbursement of both winner’s and loser’s expenses by a third party (external 

reimbursement). This reimbursement scheme is equivalent to a subsidy granted by a third party to 

all participants in the contest, regardless of the outcome (Glazer & Konrad, 1999). Third parties 

may provide subsidies to encourage participation and investment in competitions, particularly 



 

6 
 

when there is concern that potential candidates may be deterred by high costs. Examples of such 

subsidies can be found in various fields, such as government tenders, academic research incentives, 

and initiatives encouraging manufacturers to invest in green energy (Bai et al., 2019). 

Scheme F: reciprocal reimbursement scheme – the winner reimburses the loser, and the loser 

reimburses the winner (internal reimbursement). This reimbursement scheme is equivalent to 

expenses subsidy (such as Scheme E), but the source is internal (from the opponents), and with the 

addition of a lump-sum tax amounting to a certain percentage of the opponent’s expenses. While 

this is a theoretical structure that completes all possible schemes, direct examples are very rare.  

1.2. Desirable properties: full-reimbursement, neutrality, and viability 

In Tullock’s (1980) celebrated contest, the players invest efforts to win a particular prize, and the 

winning probabilities increase with their efforts (Bevia & Corchon, 2024; Konrad, 2009). 

Applying this setting, we aim to clarify the preferred scheme of reimbursement for specific 

objectives of the contest designer, while focusing on three desirable properties: neutrality, viability 

and full-reimbursement. Below we define and discuss these properties further.  

Definition: Neutrality - A reimbursement scheme is considered ‘neutral’ if it preserves the 

original ratio (ranking) of players’ win probabilities even after the scheme is implemented. 

Neutrality (or rank-preservation or plausibility) is defined by a single condition: the ratio of 

players’ winning probabilities in the initial, unaltered contest must not be reversed by any 

intervention. There are two main reasons for this requirement. First, from a fairness perspective, 

players might perceive a contest as more legitimate if a subsequent intervention (the 

reimbursement scheme) does not fundamentally alter their relative chances of success. Hence, 

from a political standpoint, a policy that drastically alters winning probabilities is likely to be 

infeasible, as the initially stronger player would have the incentive and means to resist a shift that 

reduces his status from prospective winner to likely loser. Second, even if such a policy were 

enacted, the stronger player could choose to withdraw from the contest altogether, effectively 

nullifying the designer’s intentions. To avoid this outcome, the designer refrains from 

implementing policies that would lead to this reversal. This criterion aligns with Groh et al. (2012), 

who also characterize it as a neutrality-condition. Note that the setup of some models, including 

ours, is equivalent to players having the same prize valuation but different linear cost functions. In 

this case, neutrality means favoring the player who is more cost-efficient. 
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Definition: Viability – a reimbursement scheme is viable if all players exert positive efforts and 

receive non-negative payoffs in equilibrium, after the scheme is implemented. 

In any contest, particularly in a two-player setting, achieving a viable equilibrium that satisfies 

players’ participation constraints is crucial. Without viability, the contest designer’s objectives – 

which frequently rely on players’ efforts – cannot be realized.  

Definition: Full-reimbursement - A reimbursement scheme is considered full-reimbursement if 

a viable pure-strategy equilibrium exists after the scheme is implemented and the target player(s) 

fully recovers (recover) his (their) expenses by the source player or the designer. 

Full-reimbursement incentivizes the player(s) to participate and exert greater efforts compared to 

a partial refund. However, it is important to note that in some cases, a full refund may prevent the 

existence of an equilibrium. This can occur if it cancels the source player’s incentive to participate 

in the contest or leads the target player to invest infinite effort. Despite these potential challenges, 

a full refund also benefits the contest planner by making the contest more attractive and easier to 

market, ultimately increasing participation and engagement. 

1.3. The optimal reimbursement scheme and rate 

We aim to provide a theoretical tool with potential applications for finding the optimal 

reimbursement scheme, including the optimal reimbursement rates, for the following objectives: 

designer payoff, and total effort. The analysis considers the possibility that the designer is 

interested, or not interested, in the above three desirable properties. To simplify the illustration of 

the comparison of the reimbursement schemes, we assume a two-player Tullock contest and a 

linear cost. These assumptions are common in the literature (e.g. Baye et al., 2005, 2012; 

Carbonara et al., 2015; Luppi & Parisi, 2012). Reimbursement schemes in contests were earlier 

analyzed by Cohen et al. (2023). However, they focus on internal funding by the loser, uniform 

mixed funding, and non-uniform external funding - and demonstrate equivalence in terms of 

designer profit and player outcomes. But they do not consider viability or neutrality constraints. 

Additionally, unlike the current analysis, the prize values were symmetric in Cohen et al., (2023). 

In patent races, for example, the designer’s primary goal is often to maximize innovation efforts 

that enhance the likelihood of high-quality outputs, such as patents for COVID-19 vaccines. A 

similar logic applies to sports competitions, where designers recognize that high-effort contests 
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are more appealing to spectators; this drives demand and enhances ticket sales or revenue. Thus, 

maximizing participant effort aligns naturally with the designer’s commercial objectives in these 

settings (Szymanski, 2003). Scheme E, where the designer provides reimbursement to both the 

winner and the loser, results in the highest effort than all the other five schemes. Next, Scheme A, 

where the designer provides reimbursement to the winner, generates the second highest total effort 

but with a higher designer’s payoff than Scheme E. Hence, Scheme E is suitable when outcome 

quality is prioritized over neutrality. However, Scheme A introduces an imbalance, as the 

probability of winning for ex-ante weaker players is higher than that of stronger players, which 

may undermine their intrinsic motivation in the long term. 

Schemes E and F maintain both viability and neutrality, but neither allows for full-reimbursement 

– although the potential rate of reimbursement in Scheme E is higher than in Scheme F. Therefore, 

the maximal effort in Scheme E is also higher than in Scheme F. However, the maximal designer’s 

payoff in Scheme F (which is equivalent to Scheme B) is higher than the profit in Scheme E (which 

corresponds to the classic Tullock model and Scheme D). 

Scheme C, where the designer reimburses the loser, preserves neutrality and achieves a high, 

though slightly lower total effort than Scheme A. For cases where full-reimbursement and 

neutrality are crucial, Scheme C offers a viable compromise that promotes steady effort and 

intrinsic motivation without disrupting the equilibrium. 

Scheme B, in which the loser compensates the winner by reimbursing his expenses, balances the 

incentives for effort and can achieve neutrality. However, full-reimbursement is not attainable 

under Scheme B in order to maintain viability; otherwise, competition could be undermined, or 

political feasibility – as discussed earlier – could be jeopardized. If full-reimbursement for the 

winner is essential, then the designer might opt for a less balanced Scheme A or a hybrid approach 

that combines Schemes B and A by reimbursing the losing party partially. In cases without 

constraints of neutrality or viability, the scheme ranking provided in the next section offers the 

designer guidance in selecting the most effective reimbursement approach, balancing the 

competing demands of effort, payoff, and equitable participation in contest environments. 

In the next section we first set up the model. We then characterize equilibria in winner 

reimbursement and in loser reimbursement. The designer’s payoff and the total effort are analyzed 
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next, before comparing the six schemes for each criterion. Section 3 concludes by discussing the 

current results and possibilities of future work.  

2. Contests with alternative reimbursement schemes 

2.1. Model set-up  

To set up the baseline, consider a Tullock (1980) contest with two players (𝑖𝑖 = 1,2) who compete 

for a prize that Player 𝑖𝑖 values at 𝑉𝑉𝑖𝑖 > 0 by exerting costly effort 𝑥𝑥𝑖𝑖 ≥ 0. Without loss of generality, 

let 𝑉𝑉1 ≥ 𝑉𝑉2 and assume that players face no fixed cost and unit marginal cost of effort. The 

probability that Player 𝑖𝑖 wins, (the Contest Success Function, CSF) is: 𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖
𝑥𝑥1+𝑥𝑥2

 for (𝑥𝑥1 + 𝑥𝑥2) >

0, and ½ otherwise. The payoff functions in this Tullock contest are: 𝜋𝜋𝑖𝑖 𝑇𝑇 = 𝑉𝑉𝑖𝑖
𝑥𝑥𝑖𝑖

𝑥𝑥1+𝑥𝑥2
− 𝑥𝑥𝑖𝑖. The 

existence and uniqueness of equilibrium follows from Szidarovszky and Okuguchi (1997) and 

Chowdhury and Sheremeta (2011b). Following standard procedure, in equilibrium, 𝑥𝑥1∗
𝑇𝑇 = �𝑉𝑉12 𝑉𝑉2�

(𝑉𝑉1+𝑉𝑉2)2, 

𝑥𝑥2∗
𝑇𝑇 = �𝑉𝑉1 𝑉𝑉22�

(𝑉𝑉1+𝑉𝑉2)2, total effort is 𝑋𝑋∗𝑇𝑇 = 𝑥𝑥1∗
𝑇𝑇 + 𝑥𝑥2∗

𝑇𝑇 = (𝑉𝑉1 𝑉𝑉2)
(𝑉𝑉1+𝑉𝑉2) and the players’ winning probabilities are 

𝑝𝑝1∗
𝑇𝑇 = 𝑉𝑉1

(𝑉𝑉1+𝑉𝑉2) and 𝑝𝑝2∗
𝑇𝑇 = 𝑉𝑉2

(𝑉𝑉1+𝑉𝑉2), so 𝑝𝑝1
∗𝑇𝑇

𝑝𝑝2
∗𝑇𝑇 = 𝑉𝑉1

𝑉𝑉2
≥ 1. 

Note that we denote the basic Tullock set-up with superscript 𝑇𝑇. Now, given this set-up, for a 

reimbursement scheme 𝑆𝑆 (= 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹) if we denote the equilibrium variables with 

superscript 𝑆𝑆, then viability means: 𝑥𝑥1∗
𝑆𝑆 > 0, 𝑥𝑥2∗

𝑆𝑆 > 0 and neutrality means 𝑝𝑝1∗
𝑆𝑆/𝑝𝑝2∗

𝑆𝑆 ≥ 1.3 Let 𝛼𝛼 

denote the fraction of effort reimbursed, sourced either from the designer or the opponent. When 

the reimbursement comes from the designer, then the payoff of the designer is the difference 

between the total effort after reimbursement, and some function of the prize-values. Since the prize 

values are fixed, for all practical purposes, we can ignore that part. The subsequent analysis 

introduces the reimbursement schemes, evaluating their performance based on viability, neutrality, 

and the designer’s payoff.  

 
3 Note that the current set-up is equivalent to the players having the same prize valuation (𝑉𝑉1 = 𝑉𝑉2) but different linear 
cost functions, 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖). Assume that 𝑐𝑐1(𝑥𝑥1) < 𝑐𝑐2(𝑥𝑥2), in this case, neutrality (maintaining the ratio of players’ pre-
intervention winning probabilities) means favoring the player who is more cost-efficient (𝑝𝑝1∗𝑆𝑆/𝑝𝑝2∗𝑆𝑆 ≥ 1). 
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2.2. Winner reimbursement: properties 

Lemma 1. Scheme A, i.e., external reimbursement to the winner, is viable but may not be neutral. 

Proof: When the funder is external and the winner is the recipient (Scheme A), then the payoff 

functions are: 

𝜋𝜋1 
𝐴𝐴 = (𝑉𝑉1 + 𝛼𝛼𝑥𝑥1) � 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥1  (1) 

𝜋𝜋2 
𝐴𝐴 = (𝑉𝑉2 + 𝛼𝛼𝑥𝑥2) � 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥2  (2) 

where the designer reimburses the winner for 𝛼𝛼 proportion of her expenses.  

Viability can be drawn directly from Proposition 1 in Liu and Dong (2019) who show interior 

solutions with positive payoffs. However, as shown by Cohen and Sela (2005), there is an interior 

equilibrium with non-negative players' payoffs (zero), when 𝛼𝛼 = 1, that is, full-reimbursement and 

viability are satisfied. In such a case, the players’ efforts are 𝑥𝑥1∗
𝐴𝐴 = 𝑉𝑉2, 𝑥𝑥2∗

𝐴𝐴 = 𝑉𝑉1, 𝑝𝑝1∗
𝐴𝐴 = 𝑉𝑉2

𝑉𝑉1+𝑉𝑉2
, 

𝑝𝑝2∗
𝐴𝐴 = 𝑉𝑉1

𝑉𝑉1+𝑉𝑉2
, so 𝑝𝑝1

∗𝐴𝐴

𝑝𝑝2
∗𝐴𝐴 = 𝑉𝑉2

𝑉𝑉1
 ≤ 1. Hence, when the players have asymmetric prize valuations, 

neutrality is violated.           Q.E.D. 

Note that this result was extended in Matros (2012) by showing that, under 𝛼𝛼 = 1, there are corner 

equilibria in which a player invests more than the prize value of the other player and drives him 

out of the contest. 

Lemma 2. Scheme B, i.e., internal reimbursement to the winner, cannot be both complete and 

viable. To attain viability, the rate of reimbursement, 𝛼𝛼, must satisfy 𝛼𝛼 ≤ 𝑉𝑉22

(𝑉𝑉12+𝑉𝑉2
2)
≤ 1

2
. 

Proof: When the loser reimburses the winner (Scheme B), then the payoff functions are: 

𝜋𝜋1 
𝐵𝐵 = (𝑉𝑉1 + 𝛼𝛼𝑥𝑥1) � 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� − 𝛼𝛼𝑥𝑥2 �1 −

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥1 (3) 

𝜋𝜋2 
𝐵𝐵 = (𝑉𝑉2 + 𝛼𝛼𝑥𝑥2) � 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� − 𝛼𝛼𝑥𝑥1 �1 −

𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥2 (4) 

where the losing player reimburses the winner for 𝛼𝛼 percent of her expenses. As studied in the 

literature (e.g., Katz 1988, Farmer and Pecorino 1999), let us show that to obtain a unique interior 

equilibrium, it is necessary that 𝛼𝛼 < 1. In other words, full-reimbursement must be violated. 
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Notice that (3) and (4) can be presented as: 

𝜋𝜋1 
𝐵𝐵 = 𝑉𝑉1

 𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

− 𝑥𝑥1 + 𝛼𝛼 (𝑥𝑥1 − 𝑥𝑥2)   (5) 

𝜋𝜋2 
𝐵𝐵 = 𝑉𝑉2

 𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

− 𝑥𝑥2 + 𝛼𝛼 (𝑥𝑥2 − 𝑥𝑥1)   (6) 

The first-order equilibrium conditions are: 

𝜕𝜕𝜋𝜋1 
𝐵𝐵

𝜕𝜕𝑥𝑥1 
= 𝛼𝛼+ 𝑉𝑉1 𝑥𝑥2

(𝑥𝑥1+𝑥𝑥2)2 − 1 = 0     (7) 

𝜕𝜕𝜋𝜋2 
𝐵𝐵

𝜕𝜕𝑥𝑥2 
= 𝛼𝛼+ 𝑉𝑉2 𝑥𝑥1

(𝑥𝑥1+𝑥𝑥2)2 − 1 = 0     (8) 

Given that the second-order conditions are satisfied, since 𝜕𝜕
2𝜋𝜋1

𝐵𝐵

𝜕𝜕𝑥𝑥1
2 = − 2 𝑉𝑉1 𝑥𝑥2

(𝑥𝑥1+𝑥𝑥2)3 < 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕
2𝜋𝜋2

𝐵𝐵

𝜕𝜕𝑥𝑥2
2 =

− 2 𝑉𝑉2 𝑥𝑥1
(𝑥𝑥1+𝑥𝑥2)3 < 0, the players’ equilibrium efforts are: 

𝑥𝑥1∗
𝐵𝐵 = 𝑉𝑉12 𝑉𝑉2

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2     (9) 

𝑥𝑥2∗
𝐵𝐵 = 𝑉𝑉1 𝑉𝑉22

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2 
     (10) 

To ensure positive efforts, 𝛼𝛼 < 1. Substituting (9) and (10) into (5) and (6), we get: 

𝜋𝜋1 
∗ 𝐵𝐵 = 𝑉𝑉1 �𝑉𝑉12(1−𝛼𝛼)−𝛼𝛼𝑉𝑉22�

 (1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2     (11) 

𝜋𝜋2 
∗ 𝐵𝐵 = 𝑉𝑉2�𝑉𝑉22(1−𝛼𝛼)−𝛼𝛼𝑉𝑉12�

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2 
    (12) 

It can be readily verified that these payoffs are not negative,  

𝛼𝛼 ≤ 𝑉𝑉22

(𝑉𝑉12+𝑉𝑉2
2)
≤ 1

2
     (13) 

Hence, viability is satisfied only when (13) is satisfied, that is, full-reimbursement is given up. 

Note that, for the Tullock CSF, Scheme B with partial reimbursement satisfies the neutrality 

imperative because 𝑝𝑝1
∗𝐵𝐵

𝑝𝑝2∗
𝐵𝐵 = 𝑥𝑥1

∗𝐵𝐵

𝑥𝑥2∗
𝐵𝐵 = 𝑉𝑉1

𝑉𝑉2
.                 Q.E.D. 
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Note that reimbursement scheme B was studied also by Baye at al. (2005, 2012) in a symmetric 

all-pay auction set-up. In their settings, interior equilibrium exists also under full-reimbursement 

(𝛼𝛼 = 1), and not just under partial reimbursement (𝛼𝛼 < 1) as in our setting with a stochastic CSF.  

Lemmas 1 and 2 imply the following impossibility rule: 

Theorem 1. No scheme of reimbursement for the winner (Schemes A and B) can satisfy full-

reimbursement, neutrality, and viability.  

2.3. Loser reimbursement: properties 

In contrast to the Theorem 1, we now show that consistency among the three properties (full-

reimbursement, neutrality, and viability) is possible under reimbursement of the loser’s costs.  

Theorem 2. Both the internal reimbursement and external reimbursement schemes for the loser 

(Schemes C and D) can satisfy the full-reimbursement, neutrality, and viability criteria. 

Proof: We will prove this in two parts. First, for external reimbursement (part 1) and then for 

internal reimbursement (part 2).  

Part 1. Suppose that the funder is external, and the loser is the recipient (Scheme C). In this case, 

the payoff functions are: 

𝜋𝜋1 
𝐶𝐶 = 𝑉𝑉1 �

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� + 𝛼𝛼𝑥𝑥1 �1 −
𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥1   (14) 

𝜋𝜋2 
𝐶𝐶 = 𝑉𝑉2 �

𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

� + 𝛼𝛼𝑥𝑥2 �1 −
𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥2   (15) 

Or, alternatively, 

𝜋𝜋1 
𝐶𝐶 = (𝑉𝑉1 − 𝛼𝛼𝑥𝑥1) � 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥1(1 − 𝛼𝛼)   (14’) 

𝜋𝜋2 
𝐶𝐶 = (𝑉𝑉2 − 𝛼𝛼𝑥𝑥2) � 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥2(1 − 𝛼𝛼)    (15’) 

where the designer reimburses the loser for 𝛼𝛼 percent of her expenses.  

The first-order conditions, in equilibrium, are:  

𝜕𝜕𝜋𝜋1 
𝐶𝐶

𝜕𝜕𝑥𝑥1 
= 𝑥𝑥2 (𝑉𝑉1+𝛼𝛼𝑥𝑥2)

(𝑥𝑥1+𝑥𝑥2)2 − 1 = 0      (16) 
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𝜕𝜕𝜋𝜋2
𝐶𝐶

𝜕𝜕𝑥𝑥2 
= 𝑥𝑥1 (𝑉𝑉2+𝛼𝛼𝑥𝑥1)

(𝑥𝑥1+𝑥𝑥2)2 − 1 = 0     (17) 

Note that the second-order conditions are satisfied, since 𝜕𝜕
2𝜋𝜋1

𝐶𝐶

𝜕𝜕𝑥𝑥1
2 = − 2𝑥𝑥2( 𝑉𝑉1+𝛼𝛼 𝑥𝑥2)

(𝑥𝑥1+𝑥𝑥2)3 < 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕
2𝜋𝜋2

𝐶𝐶

𝜕𝜕𝑥𝑥2
2 =

− 2𝑥𝑥1( 𝑉𝑉1+𝛼𝛼 𝑥𝑥1)
(𝑥𝑥1+𝑥𝑥2)3 < 0.  

Since 𝑙𝑙𝑖𝑖𝑙𝑙
𝑥𝑥1→∞

𝜋𝜋1(𝑥𝑥1, 𝑥𝑥2) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑥𝑥2→∞

𝜋𝜋2(𝑥𝑥1, 𝑥𝑥2) = −∞,  players’ efforts are bounded from above by some 

constant 𝑐𝑐𝑖𝑖 > 0 making [0, 𝑐𝑐𝑖𝑖] the set of pure-strategies for each player i (𝑖𝑖 = 1,2). In Appendix 

A, we show that these upper bounds for players 1 and 2 are 𝑉𝑉1 α⁄  and 𝑉𝑉2 α⁄ , respectively. Given 

that each player’s payoff function is concave in its own control variable when the opponent’s is 

fixed and the strategy set is compact, equilibrium existence follows from Theorem 3.1 of Reny 

(1999), as Scheme C satisfies the Better-Reply-Secure property. Since Scheme C has no corner 

equilibrium, it must have an interior equilibrium in which (𝑥𝑥1, 𝑥𝑥2) ∈ (0,𝑉𝑉1 α⁄ ) × (0,𝑉𝑉2 α⁄ ) (see 

Appendix A). 

The analytical solution to the Nash equilibrium in efforts under Scheme C, derived from the first-

order conditions in equations (16) and (17), is highly complex and results in lengthy third-degree 

equations, thus, we provide the analytical proof in Appendix A for the existence of an interior 

equilibrium in efforts for every 𝛼𝛼 (including 𝛼𝛼 = 1). 

Note that in the symmetric case, where 𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉, we would have obtained:4  

𝑥𝑥1∗
𝐶𝐶 = 𝑥𝑥2∗

𝐶𝐶 = 𝑉𝑉
4−𝛼𝛼

  (18) 

Dividing (16) by (17) gives: 

𝑥𝑥2 
𝑥𝑥1

= 𝑉𝑉2+𝛼𝛼𝑥𝑥1
𝑉𝑉1+𝛼𝛼𝑥𝑥2

   (19) 

 
4 Matros and Armanios (2009) studied the symmetric version (𝑉𝑉1 = 𝑉𝑉2) of this reimbursement scheme but allowed 
reimbursement of both the winner and the loser. They showed that there is an interior equilibrium for any 𝛼𝛼. They 
also obtained that under external reimbursement to the loser, the designer’s payoff declines in 𝛼𝛼. Instead, we study 
situations that allow asymmetry between the prize valuations and show (in Section 2.2) that the optimal 𝛼𝛼 for the 
designer’s payoff decreases as the gap between the asymmetries increases.  
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Since 𝑉𝑉2 < 𝑉𝑉1, 𝑉𝑉2+𝛼𝛼𝑥𝑥1
𝑉𝑉1+𝛼𝛼𝑥𝑥2

< 𝑉𝑉1+𝛼𝛼𝑥𝑥1
𝑉𝑉1+𝛼𝛼𝑥𝑥2

. Assume that 𝑥𝑥1 < 𝑥𝑥2 and 𝑥𝑥2 
𝑥𝑥1

> 1. This results in a contradiction, 

since 𝑥𝑥2
𝑥𝑥1

= 𝑉𝑉2+𝛼𝛼𝑥𝑥1
𝑉𝑉1+𝛼𝛼𝑥𝑥2

< 𝑉𝑉1+𝛼𝛼𝑥𝑥2
𝑉𝑉1+𝛼𝛼𝑥𝑥2

= 1, which implies that the inequality 0 < 𝑥𝑥2∗
𝐶𝐶 < 𝑥𝑥1∗

𝐶𝐶 is necessarily 

satisfied. Tullock CSF ensures that Player 1’s winning probability remains larger than Player 

2’s: 𝑝𝑝2∗ <  𝑝𝑝1∗. To sum up, neutrality and viability are satisfied, and full-reimbursement can be 

satisfied as well. 

Part 2: When the winner reimburses the loser (Scheme D). Then the payoff functions are: 

𝜋𝜋1 
𝐷𝐷 = (𝑉𝑉1 − 𝛼𝛼𝑥𝑥2) � 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� + 𝛼𝛼𝑥𝑥1 �1 −

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥1  (20) 

𝜋𝜋2 
𝐷𝐷 = (𝑉𝑉2 − 𝛼𝛼𝑥𝑥1) � 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� + 𝛼𝛼𝑥𝑥2 �1 −

𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥2  (21) 

Since 𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

+ 𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

= 1, equations (20) and (21) can be written as:  

𝜋𝜋1 
𝐷𝐷 = 𝑉𝑉1 �

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥1 = 𝜋𝜋1 
𝑇𝑇      (20’) 

𝜋𝜋2 
𝐷𝐷 = 𝑉𝑉2 �

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥2 = 𝜋𝜋2 
𝑇𝑇      (21’) 

That is, the payoff functions of Scheme D are equal to the classic Tullock’s benchmark contest, 

regardless of the rate of reimbursement, 𝛼𝛼 (full-reimbursement can be applied). Moreover, Scheme 

D satisfies neutrality and viability5, as well as the classic Tullock contest does.  Q.E.D. 

To sum up, Theorems 1 and 2 clarify why full-reimbursement of the winner’s expenses is unlikely 

to be realized under certain desirable properties, whereas it is possible when the loser is the 

recipient. This is because to get a viable contest, there should be some room for competition. 

Reimbursing the winner may discourage the players, whereas repaying the loser in full provides 

incentives to “enter” the contest while repaying the winner does not. 

2.4. Reimbursement of Both winner and loser: properties 

The final pair of reimbursement covers both the loser and the winner, whether the reimbursement 

is internal or external – the outcome remains the same:  

 
5 Since 𝑥𝑥1∗

𝐷𝐷 = 𝑉𝑉12𝑉𝑉2
𝑉𝑉1+𝑉𝑉2

> 0, 𝑥𝑥2∗
𝐷𝐷 = 𝑉𝑉12𝑉𝑉2

𝑉𝑉1+𝑉𝑉2
> 0, 𝑝𝑝1

∗𝐷𝐷

𝑝𝑝2∗
𝐷𝐷 = 𝑉𝑉1

𝑉𝑉2
> 1,𝜋𝜋1 

∗ 𝐷𝐷 = 𝑉𝑉13

 (𝑉𝑉1+𝑉𝑉2)2
> 0 and  𝜋𝜋2 

∗ 𝐷𝐷 = 𝑉𝑉23

 (𝑉𝑉1+𝑉𝑉2)2
> 0. 
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Theorem 3. Both the internal and external reimbursement schemes for both the winner and the 

loser (Schemes E and F) satisfy the neutrality and viability criteria, but do not satisfy full-

reimbursement. 

Proof: Here, we will also prove this in two parts. First, for external reimbursement (part a) and 

then for internal reimbursement (part b).  

Part a. Suppose the reimbursement is provided by an external funder, and both the winner and the 

loser receive compensation (Scheme E). In this case, the payoff functions are: 

𝜋𝜋1 
𝐸𝐸 = (𝑉𝑉1 + 𝛼𝛼𝑥𝑥1) � 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� + 𝛼𝛼𝑥𝑥1 �1 −

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥1 (22) 

𝜋𝜋2 
𝐸𝐸 = (𝑉𝑉2 + 𝛼𝛼𝑥𝑥2) � 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� + 𝛼𝛼𝑥𝑥2 �1 −

𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥2 (23) 

This scheme corresponds to the classic Tullock benchmark model with a subsidy rate of 𝛼𝛼: 

𝜋𝜋1 
𝐸𝐸 = 𝑉𝑉1 �

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥1(1 − 𝛼𝛼)  (22’) 

𝜋𝜋2 
𝐸𝐸 = 𝑉𝑉2 �

𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥2(1 − 𝛼𝛼)              (23’) 

This simple mechanism was studied by Glazer and Konrad (1999). Under this framework, the 

players’ equilibrium efforts and payoffs are positive and equal to: 𝑥𝑥1∗
𝐸𝐸 = 𝑉𝑉12𝑉𝑉2

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2, 𝑥𝑥2
∗𝐸𝐸 =

𝑉𝑉1𝑉𝑉22

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2, 𝜋𝜋1∗
𝐸𝐸 = V13

(𝑉𝑉1+𝑉𝑉2)2 and 𝜋𝜋2∗
𝐸𝐸 = V23

(𝑉𝑉1+𝑉𝑉2)2, and the ratio of players’ winning probabilities is 

given by: 𝑝𝑝1
∗𝐸𝐸

𝑝𝑝2
∗𝐸𝐸 = 𝑉𝑉1

𝑉𝑉2
> 1. Thus, Scheme E satisfies neutrality and viability. However, full-

reimbursement is not possible because when 𝛼𝛼 = 1, there is no equilibrium. 

Part b. Now, when the funder is internal, and both the winner and the loser is the recipient (Scheme 

F), namely, reciprocal reimbursement. In this case, the payoff functions are: 

𝜋𝜋1 
𝐹𝐹 = (𝑉𝑉1 + 𝛼𝛼𝑥𝑥1 − 𝛼𝛼𝑥𝑥2) � 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� + (𝛼𝛼𝑥𝑥1 − 𝛼𝛼𝑥𝑥2) �1 − 𝑥𝑥1

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥1  (24) 

𝜋𝜋2 
𝐹𝐹 = (𝑉𝑉2 + 𝛼𝛼𝑥𝑥2 − 𝛼𝛼𝑥𝑥1) � 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� + (𝛼𝛼𝑥𝑥2 − 𝛼𝛼𝑥𝑥1) �1 − 𝑥𝑥2

𝑥𝑥1+𝑥𝑥2
� − 𝑥𝑥2  (25) 
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This scheme is equivalent to the Tullock classic benchmark model with a subsidy rate 𝛼𝛼 and a 

lump-sum tax 𝛼𝛼𝑥𝑥𝑗𝑗, where 𝑗𝑗 ≠ 𝑖𝑖: 

𝜋𝜋1 
𝐹𝐹 = 𝑉𝑉1 �

𝑥𝑥1
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥1(1 − 𝛼𝛼) − 𝛼𝛼𝑥𝑥2   (24’) 

𝜋𝜋2 
𝐹𝐹 = 𝑉𝑉2 �

𝑥𝑥2
𝑥𝑥1+𝑥𝑥2

� − 𝑥𝑥2(1 − 𝛼𝛼) − 𝛼𝛼𝑥𝑥1              (25’) 

Applying the results from Glazer and Konrad (1999), the equilibrium efforts in Scheme F are the 

same as in Scheme E: 𝑥𝑥2∗
𝐹𝐹 = 𝑉𝑉12𝑉𝑉2

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2 = 𝑥𝑥1∗
𝐸𝐸, 𝑥𝑥2∗

𝐹𝐹 = 𝑉𝑉1𝑉𝑉22

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2 = 𝑥𝑥2∗
𝐸𝐸, and thus, the ratio of 

players’ winning probabilities remains: 𝑝𝑝1
∗𝐹𝐹

𝑝𝑝2
∗𝐹𝐹 = 𝑉𝑉1

𝑉𝑉2
> 1. The players’ payoff functions are: 𝜋𝜋1 

∗ 𝐹𝐹 =

𝑉𝑉1�𝑉𝑉12−𝛼𝛼�𝑉𝑉12+𝑉𝑉22��

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2  and 𝜋𝜋2 
∗ 𝐹𝐹 =

𝑉𝑉2�𝑉𝑉22−𝛼𝛼�𝑉𝑉12+𝑉𝑉22��

(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2)2 , which non-negatives only if: 

𝛼𝛼 ≤ 𝑉𝑉22

𝑉𝑉12+𝑉𝑉22
   (26) 

Similar to Scheme E, Scheme F satisfies neutrality and viability but does not allow full-

reimbursement. The key difference between the two schemes lies in the maximum possible 

reimbursement rate 𝛼𝛼, which is 𝛼𝛼 → 1 in Scheme E, and 𝛼𝛼 ≤ 𝑉𝑉22

𝑉𝑉12+𝑉𝑉22
 in Scheme F.  Q.E.D. 

2.5. Designer’s payoff 

Consider a contest designer who wishes to maximize his payoff function (𝜋𝜋𝑑𝑑 
∗ = 𝑥𝑥1∗ + 𝑥𝑥2∗ −

𝑐𝑐𝑑𝑑(𝛼𝛼, 𝑥𝑥1∗, 𝑥𝑥2∗)): the difference between the players’ total effort and the amount of the reimbursement 

to one of them in external reimbursement 𝑐𝑐𝑑𝑑, while upholding both viability and neutrality. Note 

that in internal reimbursement 𝑐𝑐𝑑𝑑(𝛼𝛼, 𝑥𝑥1∗, 𝑥𝑥2∗) = 0. Such an objective is plausible when efforts are 

transferred to the designer, as often seen in the rent-seeking literature or where the effort is a direct 

source of revenue for the designer as in sports. 

Finding 1. When the prize value asymmetry (𝑉𝑉1/𝑉𝑉2) is low, the optimal reimbursement parameter 

𝛼𝛼 for designer payoff maximization in case of internal reimbursement for the loser (Scheme C) is 

𝛼𝛼 = 0. But when the prize value asymmetry is high, the optimal 𝛼𝛼 is 1. 
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Finding 2. When the reimbursement is external and the prize value asymmetry is high (low), then 

reimbursement for the winner (Scheme A) is payoff dominated (dominant) for the designer relative 

to reimbursement for the loser (Scheme C with optimal 𝛼𝛼). 

Proof and simulations: Note that due to the mathematical-algebraic difficulty in extracting the 

equilibrium of Scheme C, Findings 1 and 2 are illustrated by simulations. 

By applying Reimbursement Scheme A, in interior equilibrium with a full-reimbursement, the 

designer can secure the following maximal expected net payoff (Cohen & Sela, 2005):  

𝜋𝜋𝑑𝑑 
∗ 𝐴𝐴 = 𝑥𝑥1∗

𝐴𝐴 + 𝑥𝑥2∗
𝐴𝐴 − 𝑥𝑥1∗

𝐴𝐴 𝑥𝑥1∗
𝐴𝐴

𝑥𝑥1∗
𝐴𝐴+𝑥𝑥2∗

𝐴𝐴 − 𝑥𝑥2∗
𝐴𝐴 𝑥𝑥2∗

𝐴𝐴

𝑥𝑥1∗
𝐴𝐴+𝑥𝑥2∗

𝐴𝐴 = 2𝑉𝑉1𝑉𝑉2
𝑉𝑉1+𝑉𝑉2

= 2𝑋𝑋𝑇𝑇  (27) 

Note that Liu and Dong (2019) showed that the maximization of the Designer’s profit is obtained 

through full-reimbursement (𝛼𝛼 = 1). In addition, they showed that the total effort and the 

designer’s payoff in Scheme A are not directly tied to the number of players. 

By Theorem 1, Scheme A of external reimbursement of the winner is inconsistent with viability 

and neutrality. In other words, a designer who insists on upholding these properties cannot apply 

Scheme A. By Theorem 2, these properties are satisfied when the designer applies Scheme C of 

external reimbursement to the loser. In this case, their expected net payoff is:  

𝜋𝜋𝑑𝑑 
∗ 𝐶𝐶 = 𝑥𝑥1∗

𝐶𝐶 + 𝑥𝑥2∗
𝐶𝐶 − 𝛼𝛼𝑥𝑥1∗

𝐶𝐶 𝑥𝑥2∗
𝐶𝐶

𝑥𝑥1∗
𝐶𝐶+𝑥𝑥2∗

𝐶𝐶 − 𝛼𝛼𝑥𝑥2∗
𝐶𝐶 𝑥𝑥1∗

𝐶𝐶

𝑥𝑥1∗
𝐶𝐶+𝑥𝑥2∗

𝐶𝐶 = 𝑥𝑥1∗
𝐶𝐶 + 𝑥𝑥2∗

𝐶𝐶 − 2𝛼𝛼𝑥𝑥1∗
𝐶𝐶
𝑥𝑥2∗

𝐶𝐶

𝑥𝑥1∗
𝐶𝐶+𝑥𝑥2∗

𝐶𝐶   (28) 

Given the algebraic difficulty of extracting the players’ equilibrium efforts as a function of the 

prize values from Eq. 18, we use simulation to compare the Designer’s payoff margins between 

Scheme C with other schemes. We start by comparing Scheme C with Scheme A. 

Let 𝑉𝑉1 = 100. Assuming 12 alternative prize valuations 𝑉𝑉2 of Player 2 and using the first-order 

conditions (16) and (17), we obtain by simulation the equilibrium 𝑥𝑥1∗, 𝑥𝑥2∗ and 𝜋𝜋𝑑𝑑 
∗  of Scheme C, 

when 0 ≤ 𝛼𝛼 ≤ 1 (but, for convenience, only 𝛼𝛼 = 0, 𝛼𝛼 = 0.5, and 𝛼𝛼 = 1 are shown) . We also show 

the equilibrium 𝑥𝑥1∗, 𝑥𝑥2∗ , and 𝜋𝜋𝑑𝑑 
∗ of Scheme A and Scheme D – which is equal to the classic Tullock 

model (see Table B1 in Appendix B). 

Matros and Armanios (2009) showed that symmetric external reimbursement for the winner is 

payoff dominant over external reimbursement for the loser. We extend their result by simulation 

and show in Figure 1 that when there is high asymmetry in prize valuations, then reimbursing the 
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loser is payoff-dominant for the designer relative to reimbursing the winner. That is, when the 

value asymmetry (𝑉𝑉1/𝑉𝑉2) is high enough, the result of Matros and Armanios (2009) is reversed: 

the designer‘s payoff decreases with 𝛼𝛼, and the optimal 𝛼𝛼 for maximizing the designer‘s payoff is 

0. As a result, in Scheme C, the optimal 𝛼𝛼 for a designer aiming to maximize profit is 𝛼𝛼 = 0 at 

high asymmetry and 𝛼𝛼 = 1 at low asymmetry. 

In the simulation, when the asymmetry is high (𝑉𝑉1/𝑉𝑉2 > 6.786), the Designer’s payoff is larger in 

Scheme C than in Scheme A, 𝜋𝜋𝑑𝑑 
∗ 𝐶𝐶 > 𝜋𝜋𝑑𝑑 

∗ 𝐴𝐴, when 𝛼𝛼 = 1. In such a situation, Scheme C is not only 

consistent with viability and neutrality but gives the designer an advantage (higher payoff) 

compared to Scheme A. Recall that this advantage exists by Theorem 2, avoiding the reversal of 

the players’ winning probabilities. 

Figure 1. Designer’s payoff in Scheme C, when 𝑉𝑉1 = 100 and 𝑉𝑉2 takes values 1, 5, 50, and 100 

Q.E.D 

Finding 3. When the reimbursement is internal, reimbursement for the winner (Scheme B) is 

always more payoff dominant for the designer relative to reimbursement for the loser (Scheme D). 

Proof: We now compare the designer’s payoff when he applies Schemes B and D. In the former 

case, the payoff is equal to the total effort, so by (9) and (10), 
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𝑋𝑋∗𝐵𝐵 = 𝑥𝑥1∗
𝐵𝐵 + 𝑥𝑥2∗

𝐵𝐵 = 𝑉𝑉1 𝑉𝑉2/[(1 − 𝛼𝛼)(𝑉𝑉1 + 𝑉𝑉2)]  (29) 

Given that 𝜕𝜕X∗
𝐵𝐵

𝜕𝜕𝛼𝛼 > 0, and since positive efforts and payoffs constrain the reimbursement rate 𝛼𝛼 (it 

cannot be complete), by (Eq. 13), the maximal payoff is obtained at : 

𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥
𝐵𝐵 = 𝑉𝑉22/(𝑉𝑉12 + 𝑉𝑉22)     (30) 

which yields the maximal payoff6: 

𝜋𝜋𝑑𝑑 
∗ 𝐵𝐵 = �𝑉𝑉2 �𝑉𝑉12 + 𝑉𝑉22��/[𝑉𝑉1 (𝑉𝑉1 + 𝑉𝑉2)]   (31) 

Since Scheme D, with a full-reimbursement, is equivalent to no intervention (the benchmark 

Tullock contest, see Part 2 of the proof of Theorem 2), the maximal payoff is: 

𝜋𝜋𝑑𝑑 
∗ 𝐷𝐷 = 𝑉𝑉1𝑉𝑉2/(𝑉𝑉1 + 𝑉𝑉2) = 𝑋𝑋𝑇𝑇    (32) 

Hence, Scheme B with 𝛼𝛼 = 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥
𝐵𝐵  is payoff-dominant over Scheme D. That is: 

𝜋𝜋𝑑𝑑 
∗ 𝐵𝐵 = 𝑉𝑉2 �𝑉𝑉12+𝑉𝑉22�

𝑉𝑉1 (𝑉𝑉1+𝑉𝑉2) > 𝑉𝑉2 �𝑉𝑉12�
𝑉𝑉1 (𝑉𝑉1+𝑉𝑉2) = 𝑉𝑉1𝑉𝑉2

𝑉𝑉1+𝑉𝑉2
= 𝜋𝜋𝑑𝑑 

∗ 𝐷𝐷.       Q.E.D. 

Finding 4. When reimbursement goes to the winner, external reimbursement (Scheme A) is always 

payoff-dominant over the most effective internal reimbursement scheme (Scheme B). 

Proof: By (27) and (31), and given that 𝑉𝑉1 > 𝑉𝑉2, 𝜋𝜋𝑑𝑑 
∗ 𝐴𝐴 = 2𝑉𝑉1𝑉𝑉2/(𝑉𝑉1 + 𝑉𝑉2) is always greater than 

𝜋𝜋𝑑𝑑 
∗ 𝐵𝐵 = �𝑉𝑉2 �𝑉𝑉12 + 𝑉𝑉22��/[𝑉𝑉1 (𝑉𝑉1 + 𝑉𝑉2)].        Q.E.D. 

Finding 4 might appear to be counterintuitive – as the designer is willing to reimburse the winner 

with his own fund rather than allowing the loser to do it. However, note that an internal 

reimbursement scheme will reduce the incentive to compete as the loser’s payoff might become 

too low. This discouragement is alleviated when the designer reimburses the winner. Similarly, as 

already studied in the literature (e.g., Cornes & Hartley, 2005), when the prize value is more 

symmetric, players tend to expend more resources compared to when it is asymmetric. 

 
6 Note that the maximum payoff the designer can achieve in Scheme B is 𝜋𝜋𝑑𝑑 

∗ 𝐵𝐵, obtained at 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥𝐵𝐵 . However, in this 
situation, α is not optimal, as it does not satisfy viability. 
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When the designer will have to reimburse it, reimbursement cost outweighs the gain of the extra 

revenue. Hence, as we see in Finding 5, an internal scheme provides a higher payoff for the 

designer. 

Finding 5. When reimbursement goes to the loser and prize asymmetry is low, then the internal 

reimbursement (Scheme D) is payoff-dominant over the external reimbursement (Scheme C). 

Proof and simulations: Due to the mathematical-algebraic difficulty in extracting the equilibrium 

of Scheme C, Finding 5 is obtained by simulation. Applying the simulation as in the previous 

section and noting that 𝜋𝜋𝑑𝑑 
∗ 𝐷𝐷 = 𝑋𝑋𝑇𝑇, we get Table B1 (see Appendix B), in which 𝜋𝜋𝑑𝑑 

∗ 𝐶𝐶can be 

compared with 𝜋𝜋𝑑𝑑 
∗ 𝐷𝐷. It turns out that only when the prize value asymmetry is high, i.e., 𝑉𝑉1/𝑉𝑉2 >

23.421 (solved by simulations, see also Columns 1, 2, 5, and 8 in Table 2), Scheme C is payoff 

dominant to Scheme D.                Q.E.D.                                                                                      

Finding 6. External reimbursement for the winner (Scheme A) is always payoff-dominant relative 

to internal reimbursement for the loser (Scheme D).  

Proof: By (27) and (32), 𝜋𝜋𝑑𝑑 
∗ 𝐷𝐷 = 𝑋𝑋𝑇𝑇 and 𝜋𝜋𝑑𝑑 

∗ 𝐴𝐴 = 2𝑋𝑋𝑇𝑇, which means 𝜋𝜋𝑑𝑑 
∗ 𝐴𝐴 > 𝜋𝜋𝑑𝑑 

∗ 𝐷𝐷.   Q.E.D. 

Finding 7. The designer’s payoff in an external reimbursement for both the winner and the loser 

(Scheme E), is the same as in an internal reimbursement for the loser (Scheme D). 

Proof: According to Section 2.4, the designer’s payoff in Scheme E (total efforts minus the subsidy 

granted) is the same as the designer’s payoff in Scheme D (see Finding 3): 𝜋𝜋𝑑𝑑 
∗ 𝐸𝐸 = 𝑥𝑥1∗

𝐸𝐸 + 𝑥𝑥2∗
𝐸𝐸 −

𝛼𝛼𝑥𝑥1∗
𝐸𝐸 − 𝛼𝛼𝑥𝑥2∗

𝐸𝐸 = 𝑉𝑉1𝑉𝑉2
(𝑉𝑉1+𝑉𝑉2) = 𝑋𝑋𝑇𝑇 = 𝜋𝜋𝑑𝑑 

∗ 𝐷𝐷         Q.E.D. 

Finding 8. The designer’s payoff in an internal reimbursement for both the winner and the loser 

(Scheme F), is the same as in an internal reimbursement for the winner (Scheme B). 

Proof: According to Section 2.4, The designer’s payoff in Scheme F, which equals the total efforts, 

is: 𝑋𝑋∗𝐹𝐹 = 𝑉𝑉1𝑉𝑉2
(1−𝛼𝛼)(𝑉𝑉1+𝑉𝑉2). Given the maximum value of 𝛼𝛼 obtained in (26), the maximal designer’s 

payoff is:  𝜋𝜋𝑑𝑑 
∗ 𝐹𝐹 = 𝑉𝑉2�𝑉𝑉12+𝑉𝑉22�

𝑉𝑉1(𝑉𝑉1+𝑉𝑉2) = 𝜋𝜋𝑑𝑑 
∗ 𝐵𝐵        Q.E.D. 

By Findings 2–8, we get: 
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Result 1. The reimbursement schemes can be ranked in terms of designer’s payoff as: 𝐴𝐴 ≻ 𝐵𝐵 ≍

𝐹𝐹 ≻ 𝐷𝐷 ≍ 𝐸𝐸. When the prize value asymmetry is sufficiently low, 𝐸𝐸 ≻ 𝐶𝐶. When it is high, 𝐶𝐶 ≻ 𝐴𝐴.  

This result is visualized in Figure 2. The graphs in Figure 2 specify the designer’s expected net 

revenue (payoff) when he applies Schemes A, B, C (𝛼𝛼 = 0.5 and 𝛼𝛼 = 1), D, E and F. 

Figure 2. Comparison of Designer’s payoff in Schemes A, B, C, D, E and F when 𝑉𝑉1 = 100. 

 

2.6. Players’ efforts 

As mentioned in the Introduction, the designer may wish to maximize the players’ total effort, that 

is 𝑋𝑋∗ = 𝑥𝑥1∗ + 𝑥𝑥2∗  although he is reimbursing the players. This objective is common in R&D races 

in which the quality of the final product, which depends on the effort expended, is the designer’s 

main goal. This is also relevant for the contests with social externalities (such as R&D and 

education) where more effort benefits society. As shown by Cohen and Sela (2015), the optimal 𝛼𝛼 

of Scheme A for the objective of maximization of efforts is 𝛼𝛼 = 1. 

When the reimbursement is internal (Schemes B, D and F), the total effort is equal to the designer’s 

net payoff (because the designer is not involved in reimbursement), so the optimal 𝛼𝛼 of Schemes 

B and F in this case is the maximal fraction, 𝛼𝛼 = 𝑉𝑉2
2

(𝑉𝑉1
2+𝑉𝑉2

2)
 (note, though, that the equilibrium of 
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Scheme D is independent of 𝛼𝛼).7,8 By Lemma 1, Finding 1, and Theorem 2, total effort under 

Schemes A, B, and D is 𝑋𝑋∗𝐴𝐴 = 𝑉𝑉1 + 𝑉𝑉2, 𝑋𝑋∗𝐵𝐵 = 𝑋𝑋∗𝐹𝐹 = 𝑉𝑉2 �𝑉𝑉12+𝑉𝑉22�
𝑉𝑉1 (𝑉𝑉1+𝑉𝑉2) , 𝑋𝑋∗𝐷𝐷 = 𝑉𝑉1𝑉𝑉2

𝑉𝑉1+𝑉𝑉2
. Finally, in 

Scheme E, when 𝛼𝛼 → 1, then 𝑋𝑋𝐸𝐸 → ∞.  Thus, it is easy to see that: 𝑋𝑋∗𝐸𝐸 ≻ 𝑋𝑋∗𝐴𝐴 ≻ 𝑋𝑋∗𝐵𝐵 ≍ 𝑋𝑋∗𝐹𝐹 ≻

𝑋𝑋∗𝐷𝐷, which yields: 

Result 2. The reimbursement schemes can be ranked in terms of total efforts as: 𝐸𝐸 ≻ 𝐴𝐴 ≻ 𝐵𝐵 ≍

𝐹𝐹 ≻ 𝐷𝐷. When the prize value asymmetry is sufficiently low, 𝐵𝐵 ≻ 𝐶𝐶 ≻ 𝐷𝐷, but when it high, 𝐴𝐴 ≻

𝐶𝐶 ≻ 𝐵𝐵.  

By Table 2 and Figure 3, 𝑋𝑋∗𝐴𝐴 ≻ 𝑋𝑋∗𝐶𝐶 ≻ 𝑋𝑋∗𝐷𝐷. The total efforts in Scheme C increases with 𝛼𝛼, so, 

here too the optimal 𝛼𝛼 is 1. Our results complement and add to the results of Baye et al. (2012) 

who studied different types of internal reimbursement in an all-pay auction setting. 

Figure 3. Comparison of total effort in Schemes A, B, C, D and F when 𝑉𝑉1 = 100 

 

 
7 Chen and Rodrigues-Neto (2023) applied monetary and emotional preferences in Scheme B and found that if the 
litigants’ relative advantages are sufficiently balanced, an increase in either reimbursement expenses or negative 
relational emotions increases total efforts in equilibrium. 
8 In contrast to our paper, which focuses on symmetric reimbursement rates, Baik and Shogren (1994) found that 
Scheme C with asymmetric reimbursement rates reduces effort compared to symmetric rates of return. 
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Notice that a winner-pay contest corresponds to Scheme C, where the loser receives full external 

reimbursement (𝛼𝛼 = 1), while the all-pay contest corresponds to Scheme D, which equals a non-

intervention Tullock contest. Lagerlöf (2020) studied hybrid winner-pay and all-pay contests and 

found that the total effort is always lower than in a corresponding all-pay contest with symmetric 

prizes. This result is consistent with ours. However, in all-pay auctions with variable rewards under 

incomplete information, where the reward is also a function of the bidder’s own bid (a form of 

reimbursement), there can be paradoxical behavior: reducing rewards or increasing costs may lead 

to a higher expected sum of bids or, alternatively, a higher expected maximum bid (Kaplan et al., 

2002). Yates (2011) shows that in winner-pay contests, a pure-strategy Nash equilibrium exists 

and is unique under weak assumptions on the CSF. 

2.7. Comparison between reimbursement schemes  

In this study we examine six reimbursement schemes in contests focusing on their impact on total 

effort and the designer’s net payoff, which is calculated as the total effort minus the reimbursement 

to the winner and/or loser. We find that reimbursing the winner, or both the winner and the loser, 

cannot satisfy the three criteria of full-reimbursement, neutrality, and viability. Reimbursing the 

loser is the only scheme that fully satisfies these criteria. Scheme A can be viable but cannot be 

neutral because it reverses the initial winning probabilities. By sufficiently increasing their 

investment, the weaker player can come away better off.  

Under complete reimbursement, Schemes B, E and F cannot be viable and cannot ensure positive 

efforts by both rivals. Such a viability requires that the rate of reimbursement does not exceed a 

certain limit (see Eq. 13). Any rate above this constraint causes the players to refrain from 

participating because they will have to pay the loser’s expenses if they win, making their expected 

payoff negative. Complete internal reimbursement for the winner eliminates the incentives to enter 

the contest while repaying the loser does not. If the prize value asymmetry is high, then Scheme C 

provides the highest payoff to the designer. When the asymmetry is not particularly high, Scheme 
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A is payoff dominant. However, the optimal total effort is always the largest in Scheme E and the 

smallest in Scheme D. Table 2 summarizes the findings presented in Section 2. 

Table 2. Comparing the six schemes of reimbursement 

Effort rank Payoff rank 
Viable Neutral Full-

reimbursement Scheme High 
asymmetry 

Low 
asymmetry 

High 
asymmetry 

Low 
asymmetry 

2 2 2 1 ✓ × ✓ A 
4 3 3 2 ✓ ✓ × B 

3 4 1 4 ✓ ✓ ✓ 
C  

(𝛼𝛼 = 1) 

3 4 1 3 ✓ ✓ ✓ 
C (𝛼𝛼: 

optimal) 
5 5 4 5 ✓ ✓ ✓ D 
1 1 4 5 ✓ ✓ × E 
4 3 3 2 ✓ ✓ × F 

Note: Scheme D equals to Schemes A-F when 𝛼𝛼 = 0. For Scheme B and F full-reimbursement, recall that 
we assume the maximal partial reimbursement rate that ensures viability: 𝛼𝛼 = 𝑉𝑉22/(𝑉𝑉12 + 𝑉𝑉22). 

Table 3. Optimal 𝛼𝛼 in reimbursement schemes 

Scheme Target Source 

Designer objective 

Payoff (Low 
asymmetry) 

Payoff (High 
asymmetry) 

Effort 
(High\low 

asymmetry) 
A Winner External 𝛼𝛼 = 1 
B Winner Internal 𝛼𝛼 = 𝑉𝑉22/(𝑉𝑉12 + 𝑉𝑉22) 
C Loser External 𝛼𝛼 = 0 𝛼𝛼 = 1 
D Loser Internal Unaffected by 𝛼𝛼 
E Both  External Unaffected by 𝛼𝛼 𝛼𝛼 → 1 
F Both  Internal 𝛼𝛼 = 𝑉𝑉22/(𝑉𝑉12 + 𝑉𝑉22) 

 

Table 3 presents the optimal 𝛼𝛼 for each objective function (payoff with various value asymmetry, 

effort) of the designer in each of the six reimbursement models. If the designer chooses to use 

Scheme A, the optimal reimbursement rate is 𝛼𝛼 = 1 for each of the possible objective functions.9 

While Scheme D is not affected by 𝛼𝛼 at all, the optimal 𝛼𝛼 in Schemes B and F is the maximal 𝛼𝛼 =

 
9 For a nonlinear reimbursement function, Lie and Dong (2019) showed that if the effort cost function is concave 
(convex), the optimal reimbursement scheme is (not) to return the full cost to the winner. In addition, Minchuk (2018) 
showed that if the effort cost function is concave (convex), then reimbursement increases (decreases) designer payoff. 
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𝑉𝑉2
2/(𝑉𝑉1

2 + 𝑉𝑉2
2). In Scheme C, when the designer is interested in effort or in payoff when prize value 

asymmetry is low, the optimal alpha is 𝛼𝛼 = 1. But when he is concerned with payoff and the value 

asymmetry is low, the optimal reimbursement rate is 𝛼𝛼 = 0. Scheme E is not affected by 𝛼𝛼 for 

designer’s payoff, but for effort maximization, the optimal 𝛼𝛼 is 𝛼𝛼 → 1. 

3. Discussion  

In this study, we identify the optimal reimbursement schemes in contests for different objectives: 

incentivizing effort or maximizing designer payoff (total effort, less the designer’s reimbursement 

to the winner/loser). Our analysis also addressed the desirable properties of full-reimbursement, 

neutrality, and viability. 

Our contribution builds upon existing literature on reimbursement and spillovers in Tullock 

contests (e.g., Chowdhury et al., 2011a, 2011b; Matros & Armanios, 2009). However, this is the 

very first systematic analysis of six reimbursement schemes (A, B, C, D, E, and F) categorized on 

the source of funds (internal versus external) and the target of reimbursement (winner, loser, or 

both), extended to asymmetric valuations. We find that full-reimbursement is generally optimal in 

Scheme C, even in symmetric value cases, except when maximizing payoff is the sole objective. 

In Schemes A and C under symmetry we derived the optimal reimbursement rates for objectives 

that include payoff, effort, and considerations for neutrality and viability. Notably, our findings 

confirm that Scheme A, with a full-reimbursement rate, is almost the most effective across almost 

all objectives, though it falls short in neutrality. 

In exploring the necessity of the all-pay condition (the classic Tullock contest where each player 

pays his expenses without getting a reimbursement) in neutral, non-discriminatory contests, we 

find that the complete elimination of all-pay is achievable by fully reimbursing one player’s 

expenses. Our results show that this full-reimbursement is only viable when the recipient is the 

losing-party. This effectively supports the weaker player, though this aligns with the designer’s 

interest rather than any ethical motive. 

Given that full-reimbursement typically benefits the losing party, we analyzed the designer’s 

preferences between external and internal reimbursement schemes (Schemes C and D). The 

optimal choice depends on the designer’s objectives and the degree of asymmetry in prize 

valuations. If the designer seeks to reduce disparities in winning probabilities, external Scheme C 

consistently outperforms internal Scheme D. For objectives focused on maximizing net payoff, 
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Scheme C remains favorable, but only when prize valuation asymmetry is substantial. In contexts 

where total effort is important, such as R&D competitions, Scheme C is again preferred, as external 

reimbursement of the loser’s expenses yields greater overall effort than internal reimbursement 

through Scheme D. 

Our investigation can be extended in various ways. First, the analysis can be extended to more 

than two players for all six schemes of interest. This will reflect the situations in multi-party 

competition in R&D. Second, different types of non-linear spillover effects (beyond Baye et al., 

2012 or Chowdhury et al., 2011a) can also be introduced. This can broaden the potential 

applications of the schemes. It will also be possible to show strategic equivalence between different 

types of reimbursement schemes (Chowdhury and Sheremeta, 2015). Third, both the cost function 

and the utility function can be generalized with nonlinear curvature. The latter one, specifically, 

will allow capturing the effects of the reimbursement schemes on risk-averse preferences (Liu & 

Liu, 2019). Fourth, although affirmative action is a broad area that goes beyond simple 

reimbursement in contests, it will be possible to analyze reimbursement schemes as a tool of 

affirmative action and compare those with other relevant tools (See Chowdhury et al., 2023; 

Mealem & Nitzan, 2016). Finally, there is a scarcity in the experimental literature in analyzing 

reimbursement schemes and relevant contest design issues. Our study can be used as a theoretical 

benchmark in experiments to understand behavioral foundations in such contests.  
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Appendix A. 10 

Proof of existence of an interior equilibrium: 

The in-game payment functions are (14) and (15). Since 𝑙𝑙𝑖𝑖𝑙𝑙
𝑥𝑥1→∞

𝜋𝜋1(𝑥𝑥1,𝑥𝑥2) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑥𝑥2→∞

𝜋𝜋2(𝑥𝑥1,𝑥𝑥2) = −∞, 

there exists 𝑐𝑐𝑖𝑖 > 0, for player i (𝑖𝑖 = 1,2) such that if a player choose an effort greater then 𝑐𝑐𝑖𝑖, then 

her payoff will be negative, while she could have obtained a non-negative payoff by choosing 𝑥𝑥𝑖𝑖 =

0.  This implies that any equilibrium of the game in which the efforts of the players are bounded 

from above by 𝑐𝑐𝑖𝑖  and the payoff functions are identical to those of our original game will be also 

an equilibrium of our game. So, in order to prove the existence of equilibrium in our original game, 

we may assume that the set of pure strategies of player i is the interval [0, 𝑐𝑐𝑖𝑖]. 

Since for 𝑖𝑖 = 1,2 , the function is 𝜋𝜋𝑖𝑖 is concave in the variable 𝑥𝑥𝑖𝑖 when the other variable is fixed, 

existence of an equilibrium is guaranteed by Theorem 3.1 of Reny (1999), provided that in addition 

our game has Reny’s better-reply-secure property: if (𝑎𝑎):  {𝑥𝑥𝑛𝑛}𝑛𝑛=1∞  is a sequences such that 𝑥𝑥 =

(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥𝑛𝑛  exists and 𝑥𝑥 is not an equilibrium of our game, and (𝑏𝑏):  𝑤𝑤𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑎𝑎→∞

 𝜋𝜋𝑖𝑖(𝑥𝑥𝑛𝑛) exists for 

every 𝑖𝑖 = 1,2, then there must be some player 𝑖𝑖 that can secure a payoff greater than 𝑤𝑤𝑖𝑖  at 𝑥𝑥𝑖𝑖 , 𝑖𝑖. 𝑒𝑒 

there exists 0 ≤ 𝑦𝑦𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖 and an open neighborhood U of 𝑥𝑥−𝑖𝑖 such 𝜋𝜋𝑖𝑖(𝑦𝑦𝑖𝑖 , 𝑥𝑥−𝑖𝑖′ ) > 𝑤𝑤𝑖𝑖 for all 𝑥𝑥′−𝑖𝑖 ∈ 𝑈𝑈. 

We show that our game has better-reply-secure property. Let {𝑥𝑥𝑛𝑛}𝑛𝑛=1∞  and (𝜋𝜋1,𝜋𝜋2) as in (a) and 

(b) above. If 𝑥𝑥 ∈ [0, 𝑐𝑐1] × [0, 𝑐𝑐2]\{(0,0)}, then the function 𝜋𝜋1 and 𝜋𝜋2 are continuous at 𝑥𝑥 and 

hence 𝑤𝑤𝑖𝑖 = 𝜋𝜋𝑖𝑖 (𝑥𝑥) for 𝑖𝑖 = 1,2. Since 𝑥𝑥 is not an equilibrium by assumption, there exists a player 

𝑖𝑖 = 1,2 which has profitable deviation from her strategy 𝑥𝑥𝑖𝑖 in 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2). Without loss of 

generality, if 𝑖𝑖 = 1, then there exists 𝑦𝑦1 ∈ [0, 𝑐𝑐1] such that 𝜋𝜋1 (𝑦𝑦1, 𝑥𝑥2) > 𝑤𝑤1 + 𝜀𝜀, for some 𝜀𝜀 > 0 . 

Since 𝜋𝜋1 is continuous in (𝑦𝑦1, 𝑥𝑥1) , 𝜋𝜋1(𝑦𝑦1, 𝑥𝑥2′ )>
𝜀𝜀
2

+ 𝑤𝑤1 for every 𝑥𝑥2′  in some open neighborhood of 

𝑥𝑥2 and thus 1 can secure at 𝑥𝑥 payoff greater than 𝑤𝑤1. Assume now that 𝑥𝑥 = (0,0). Since 

𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

� 𝑥𝑥1𝑛𝑛

𝑥𝑥1𝑛𝑛+𝑥𝑥2𝑛𝑛
+ 𝑥𝑥2𝑛𝑛

𝑥𝑥1𝑛𝑛+𝑥𝑥2𝑛𝑛
� = 1, we must have either 𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛→∞
� 𝑥𝑥1

,𝑥𝑥1𝑛𝑛+𝑥𝑥2𝑛𝑛 
� ≤ 1

2
 or 𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛→∞
� 𝑥𝑥2𝑛𝑛

,𝑥𝑥1𝑛𝑛+𝑥𝑥2𝑛𝑛 
� ≤ 1

2
 (Both 

limits exist by assumption). 

 
10 Special thanks are due to an anonymous reviewer, who helped on the main proof in this appendix. 
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 Without loss of generality, assume that  𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

� 𝑥𝑥1𝑛𝑛

𝑥𝑥1𝑛𝑛+𝑥𝑥2𝑛𝑛 
� ≤ 1

2
. Then, 𝑤𝑤1 = 𝑙𝑙𝑖𝑖𝑙𝑙

𝑛𝑛→∞
𝜋𝜋1(𝑥𝑥1𝑛𝑛, 𝑥𝑥2𝑛𝑛) =

 𝑙𝑙𝑖𝑖𝑙𝑙
𝑛𝑛→∞

� 𝑥𝑥1𝑛𝑛

𝑥𝑥1𝑛𝑛+𝑥𝑥2𝑛𝑛 
�𝑉𝑉1 ≤ 1

2
𝑉𝑉1. Now, for all (𝑠𝑠, 𝑡𝑡) ∈ [0, 𝑐𝑐1] × [0, 𝑐𝑐2]\{(0,0)}, we have 𝜋𝜋1(𝑠𝑠, 𝑡𝑡) =

𝑠𝑠
𝑠𝑠+𝑡𝑡

(𝑉𝑉1 − 𝛼𝛼𝑠𝑠) – 𝑠𝑠 (1-𝛼𝛼). Therefore, 𝑙𝑙𝑖𝑖𝑙𝑙 𝑡𝑡→0 𝜋𝜋1(𝑠𝑠, 𝑡𝑡) = 𝑉𝑉1 − 𝑠𝑠. Thus, if 0 < 𝑠𝑠 < 𝑉𝑉1
2

 there exists 𝜀𝜀 >

0 such that for all 0 < 𝑡𝑡 < 𝜀𝜀 ,𝜋𝜋1(𝑠𝑠, 𝑡𝑡) > 1
2
𝑉𝑉1 ≥ 𝑤𝑤1. Which implies that player 1 can secure at 𝑥𝑥 = 

(0,0) payoff greater than 𝑤𝑤1. 

This proof aligns precisely with the game conditions under Scheme C, where player i’s upper 

bound 𝑐𝑐𝑖𝑖  may be defined as greater than or equal to their prize divided by the positive constant 𝛼𝛼, 

i.e., 𝑉𝑉𝑖𝑖 𝛼𝛼⁄  (subject to 𝛼𝛼 > 0). Notably, the validity of the proof remains unaffected whether the 

upper bounds are symmetric across players or vary asymmetrically. 

Accordingly, one can establish the existence of an interior equilibrium under Scheme C, (𝑥𝑥1, 𝑥𝑥2) ∈

(0,𝑉𝑉1 α⁄ ) × (0,𝑉𝑉2 α⁄ ). To demonstrate that each player’s upper bound can indeed be defined as 

greater than or equal to 𝑉𝑉𝑖𝑖 α⁄ , consider the following argument. Without loss of generality, fix 

player 2’s effort at some 𝑥𝑥2 ∈ [0,𝑉𝑉2 α⁄ ] and consider player 1’s payoff function (14):  

𝜋𝜋1 
𝐶𝐶 = 𝑉𝑉1𝑝𝑝1 + 𝛼𝛼𝑥𝑥1(1 − 𝑝𝑝1) − 𝑥𝑥1 = (𝑉𝑉1 − 𝛼𝛼𝑥𝑥1)𝑝𝑝1 − (1 − 𝛼𝛼)𝑥𝑥1               (𝐴𝐴1) 

Where  𝑝𝑝1 denotes player 1’s probability of success as follows: 

𝑝𝑝1 = �
𝑥𝑥1

𝑥𝑥1 + 𝑥𝑥2
      𝑖𝑖𝑖𝑖             𝑥𝑥1 + 𝑥𝑥2 > 0

0.5                            𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒     
� 

If player 1 choose some 𝑥𝑥1 = (𝑉𝑉1 𝛼𝛼⁄ ) + 𝜖𝜖, where 𝜖𝜖 > 0, then her payoff 𝜋𝜋1�(𝑉𝑉1 𝛼𝛼⁄ ) + 𝜖𝜖, 𝑥𝑥2� < 0.  

Instead, if she chooses 𝑥𝑥1 = 0, then she gets payoff 𝜋𝜋1(0, 𝑥𝑥2) ≥ 0.  

We now show that our game does not have any corner equilibrium. Suppose one player chooses 

zero effort and the other a strictly positive effort. The other has a profitable deviation by marginally 

reducing their effort to reduce costs while still securing the entire prize. Similarly, in the profile 

(0,0), each player can profit by deviating to a small ε >0, winning with certainty at negligible cost. 

Thus, zero-effort profiles are not equilibria. 

Moreover, the strategy profile (𝑥𝑥1, 𝑥𝑥2) = (𝑉𝑉1 𝛼𝛼⁄ ,𝑉𝑉2 𝛼𝛼⁄ ) cannot constitute a potential equilibrium. 

Without loss of generality, fix player 2’s effort at 𝑥𝑥2 = 𝑉𝑉2 𝛼𝛼⁄   and consider player 1’s payoff 
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function expressed in (A1). If 𝛼𝛼 < 1, then player 1’s choice of 𝑥𝑥1 = 𝑉𝑉1 𝛼𝛼⁄  yields payoff  

𝜋𝜋1(𝑉𝑉1 𝛼𝛼⁄ ,𝑉𝑉2 𝛼𝛼⁄ ) < 0, which is smaller than her payoff 𝜋𝜋1(0,𝑉𝑉2 𝛼𝛼⁄ ) = 0  under the alternative 

choice 𝑥𝑥1 = 0. 

Now, if 𝛼𝛼 = 1 instead, then player 1’s choice of 𝑥𝑥1 = 𝑉𝑉1 𝛼𝛼⁄  yields payoff 𝜋𝜋1(𝑉𝑉1 𝛼𝛼⁄ ,𝑉𝑉2 𝛼𝛼⁄ ) = 0, 

but she can obtain a greater payoff 𝜋𝜋1(𝑉𝑉1 𝛼𝛼 − 𝜖𝜖′⁄ ,𝑉𝑉2 𝛼𝛼⁄ ) > 0 by decreasing her effort to 𝑥𝑥1 =

𝑉𝑉1 𝛼𝛼⁄ − 𝜖𝜖′ for any 𝜖𝜖′ ∈ (0,𝑉𝑉1 𝛼𝛼⁄ ). Hence player 1’s choice of 𝑥𝑥1 = 𝑉𝑉1 𝛼𝛼⁄  is not a best response to 

player 2’s choice of 𝑥𝑥2 = 𝑉𝑉2 𝛼𝛼⁄ . This rules out (𝑥𝑥1, 𝑥𝑥2) = (𝑉𝑉1 𝛼𝛼⁄ ,𝑉𝑉2 𝛼𝛼⁄ ) as a potential equilibrium. 

We showed that our game has an equilibrium and there is no corner equilibrium. Therefore, this 

equilibrium must be an interior one. 
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Appendix B. 

Table B1. Simulated equilibrium expected net payoff under Schemes A, C, and D. 

Value Scheme A Scheme C (𝛼𝛼 = 0.5) Scheme C (𝛼𝛼 = 1) Scheme D 

V1 V2 𝑥𝑥1𝐴𝐴
∗ 𝑥𝑥2𝐴𝐴

∗ 𝜋𝜋𝑑𝑑𝐴𝐴
∗ 𝑥𝑥1𝐶𝐶

∗ 𝑥𝑥2𝐶𝐶
∗ 𝜋𝜋𝑑𝑑𝐶𝐶

∗ 𝑥𝑥1𝐶𝐶
∗ 𝑥𝑥2𝐶𝐶

∗ 𝜋𝜋𝑑𝑑𝐶𝐶
∗ 𝑥𝑥1𝐷𝐷

∗ 𝑥𝑥2𝐷𝐷
∗ 𝜋𝜋𝑑𝑑𝐷𝐷

∗ = 𝑋𝑋𝑇𝑇 

100 1 1 100 1 1.855  0.036  1.856  6.470  0.481  6.056  0.980  0.010         0.990  

100 5 5 100 5 7.350  0.636  7.401  13.030  2.297  11.422  4.535  0.227         4.762  

100 10 10 100 10 11.890  1.878  12.146  17.070  4.425  14.467  8.264  0.826         9.091  

100 20 20 100 20 17.540  4.925  18.620  21.750  8.379  18.031  13.889  2.778       16.667  

100 30 30 100 30 20.980  8.162  23.266  24.690  12.051  20.544  17.751  5.325       23.077  

100 40 40 100 40 23.300  11.386  27.038  26.810  15.507  22.668  20.408  8.163       28.571  

100 50 50 100 50 24.940  14.525  30.286  28.450  18.789  24.607  22.222  11.111       33.333  

100 60 60 100 60 26.150  17.566  33.209  29.760  21.911  26.432  23.438  14.063       37.500  

100 70 70 100 70 27.030  20.477  35.857  30.860  24.917  28.205  24.221  16.955       41.176  

100 80 80 100 80 27.690  23.277  38.321  31.810  27.825  29.950  24.691  19.753       44.444  

100 90 90 100 90 28.200  25.981  40.659  32.620  30.622  31.652  24.931  22.438       47.368  

100 100 100 100 100 28.571  28.571  42.855  33.333  33.333  33.333  25.000  25.000       50.000  
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